2024
Practical Attacks against Black-box Code Completion Engines
Slobodan Jenko, Jingxuan He, Niels Mündler, Mark Vero, Martin Vechev
arXiv
2024
Polyrating: A Cost-Effective and Bias-Aware Rating System for LLM Evaluation
Jasper Dekoninck, Maximilian Baader, Martin Vechev
ArXiv
2024
CuTS: Customizable Tabular Synthetic Data Generation
Mark Vero, Mislav Balunović, Martin Vechev
ICML
2024
Watermark Stealing in Large Language Models
Nikola Jovanović, Robin Staab, Martin Vechev
ICML
2024
R2-FM@ICLR24 Oral
Instruction Tuning for Secure Code Generation
Jingxuan He*, Mark Vero*, Gabriela Krasnopolska, Martin Vechev
ICML
2024
* Equal contribution
Prompt Sketching for Large Language Models
Luca Beurer-Kellner, Mark Niklas Müller, Marc Fischer, Martin Vechev
ICML
2024
Guiding LLMs The Right Way: Fast, Non-Invasive Constrained Generation
Luca Beurer-Kellner, Marc Fischer, Martin Vechev
ICML
2024
A Synthetic Dataset for Personal Attribute Inference
Hanna Yukhymenko, Robin Staab, Mark Vero, Martin Vechev
arXiv
2024
Modular Synthesis of Efficient Quantum Uncomputation
Hristo Venev, Timon Gehr, Dimitar Dimitrov, Martin Vechev
ACM OOPSLA
2024
DAGER: Exact Gradient Inversion for Large Language Models
Ivo Petrov, Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, Martin Vechev
ArXiv
2024
Code Agents are State of the Art Software Testers
Niels Mündler, Mark Niklas Müller, Jingxuan He, Martin Vechev
ICML Workshop on LLMs and Cognition (also at Workshop on Foundation Models in the Wild)
2024
ConStat: Performance-Based Contamination Detection in Large Language Models
Jasper Dekoninck, Mark Niklas Müller, Martin Vechev
ArXiv
2024
From Principle to Practice: Vertical Data Minimization for Machine Learning
Robin Staab, Nikola Jovanović, Mislav Balunović, Martin Vechev
IEEE S&P
2024
Beyond Memorization: Violating Privacy Via Inference with Large Language Models
Robin Staab, Mark Vero, Mislav Balunović, Martin Vechev
ICLR
2024
Spotlight, 2024 PPPM-Award
Back to the Drawing Board for Fair Representation Learning
Angéline Pouget, Nikola Jovanović, Mark Vero, Robin Staab, Martin Vechev
arXiv
2024
Back to the Drawing Board for Fair Representation Learning
Angéline Pouget, Nikola Jovanović, Mark Vero, Robin Staab, Martin Vechev
arXiv
2024
Self-contradictory Hallucinations of Large Language Models: Evaluation, Detection and Mitigation
Niels Mündler, Jingxuan He, Slobodan Jenko, Martin Vechev
ICLR
2024
Understanding Certified Training with Interval Bound Propagation
Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin Vechev
ICLR
2024
Black-Box Detection of Language Model Watermarks
Thibaud Gloaguen, Nikola Jovanović, Robin Staab, Martin Vechev
arXiv
2024
Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning
Kostadin Garov, Dimitar I. Dimitrov, Nikola Jovanović, Martin Vechev
ICLR
2024
Exploiting LLM Quantization
Kazuki Egashira, Mark Vero, Robin Staab, Jingxuan He, Martin Vechev
arXiv
2024
NextGenAISafety@ICML24 Oral
Controlled Text Generation via Language Model Arithmetic
Jasper Dekoninck, Marc Fischer, Luca Beurer-Kellner, Martin Vechev
ICLR
2024
Spotlight
Expressivity of ReLU-Networks under Convex Relaxations
Maximilian Baader*, Mark Niklas Müller*, Yuhao Mao, Martin Vechev
ICLR
2024
* Equal contribution
Private Attribute Inference from Images with Vision-Language Models
Batuhan Tömekçe, Mark Vero, Robin Staab, Martin Vechev
arXiv
2024
Synthetiq: Fast and Versatile Quantum Circuit Synthesis
Anouk Paradis*, Jasper Dekoninck*, Benjamin Bichsel, Martin Vechev
OOPSLA
2024
* Equal contribution
SPEAR: Exact Gradient Inversion of Batches in Federated Learning
Dimitar I. Dimitrov, Maximilian Baader, Mark Niklas Müller, Martin Vechev
ArXiv
2024
Overcoming the Paradox of Certified Training with Gaussian Smoothing
Stefan Balauca, Mark Niklas Müller, Yuhao Mao, Maximilian Baader, Marc Fischer, Martin Vechev
arXiv
2024
Large Language Models are Advanced Anonymizers
Robin Staab, Mark Vero, Mislav Balunović, Martin Vechev
arXiv
2024
Reqomp: Space-constrained Uncomputation for Quantum Circuits
Anouk Paradis, Benjamin Bichsel, Martin Vechev
Quantum Journal
2024
Evading Data Contamination Detection for Language Models is (too) Easy
Jasper Dekoninck, Mark Niklas Müller, Maximilian Baader, Marc Fischer, Martin Vechev
arXiv
2024
2023
Automated Classification of Model Errors on ImageNet
Momchil Peychev*, Mark Niklas Müller*, Marc Fischer, Martin Vechev
NeurIPS
2023
* Equal contribution
Connecting Certified and Adversarial Training
Yuhao Mao, Mark Niklas Müller, Marc Fischer, Martin Vechev
NeuIPS
2023
Group and Attack: Auditing Differential Privacy
Johan Lokna, Anouk Paradis, Dimitar I. Dimitrov, Martin Vechev
ACM CCS
2023
Large Language Models for Code: Security Hardening and Adversarial Testing
Jingxuan He, Martin Vechev
ACM CCS
2023
Distinguished Paper Award
Abstraqt: Analysis of Quantum Circuits via Abstract Stabilizer Simulation
Benjamin Bichsel, Anouk Paradis, Maximilian Baader, Martin Vechev
Quantum Journal
2023
TabLeak: Tabular Data Leakage in Federated Learning
Mark Vero, Mislav Balunović, Dimitar I. Dimitrov, Martin Vechev
ICML
2023
FARE: Provably Fair Representation Learning with Practical Certificates
Nikola Jovanović, Mislav Balunović, Dimitar I. Dimitrov, Martin Vechev
ICML
2023
LMQL Chat: Scripted Chatbot Development
Luca Beurer-Kellner*, Marc Fischer*, Martin Vechev
Neural Conversational AI Workshop, TEACH -- ICML
2023
* Equal contribution
Large Language Models are Zero-Shot Multi-Tool Users
Luca Beurer-Kellner*, Marc Fischer*, Martin Vechev
Knowlege and Logical Reasoning Workshop -- ICML
2023
* Equal contribution
Abstract Interpretation of Fixpoint Iterators with Applications to Neural Networks
Mark Niklas Müller, Marc Fischer, Robin Staab, Martin Vechev
PLDI
2023
Prompting Is Programming: A Query Language for Large Language Models
Luca Beurer-Kellner, Marc Fischer, Martin Vechev
PLDI
2023
Efficient Certified Training and Robustness Verification of Neural ODEs
Mustafa Zeqiri, Mark Niklas Müller, Marc Fischer, Martin Vechev
ICLR
2023
Certified Training: Small Boxes are All You Need
Mark Niklas Müller*, Franziska Eckert*, Marc Fischer, Martin Vechev
ICLR
2023
* Equal contribution
Spotlight
Human-Guided Fair Classification for Natural Language Processing
Florian E. Dorner, Momchil Peychev, Nikola Konstantinov, Naman Goel, Elliott Ash, Martin Vechev
ICLR
2023
Spotlight
2022
(De-)Randomized Smoothing for Decision Stump Ensembles
Miklós Z. Horváth*, Mark Niklas Müller*, Marc Fischer, Martin Vechev
NeurIPS
2022
* Equal contribution
Learning to Configure Computer Networks with Neural Algorithmic Reasoning
Luca Beurer-Kellner, Martin Vechev, Laurent Vanbever, Petar Veličković
NeurIPS
2022
LAMP: Extracting Text from Gradients with Language Model Priors
Mislav Balunović*, Dimitar I. Dimitrov*, Nikola Jovanović, Martin Vechev
NeurIPS
2022
* Equal contribution
Zapper: Smart Contracts with Data and Identity Privacy
Samuel Steffen, Benjamin Bichsel, Martin Vechev
ACM CCS
2022
Distinguished Paper Award
Private and Reliable Neural Network Inference
Nikola Jovanović, Marc Fischer, Samuel Steffen, Martin Vechev
ACM CCS
2022
Latent Space Smoothing for Individually Fair Representations
Momchil Peychev, Anian Ruoss, Mislav Balunović, Maximilian Baader, Martin Vechev
ECCV
2022
On the Paradox of Certified Training
Nikola Jovanović*, Mislav Balunović*, Maximilian Baader, Martin Vechev
TMLR
2022
* Equal contribution
Data Leakage in Federated Averaging
Dimitar I. Dimitrov, Mislav Balunović, Nikola Konstantinov, Martin Vechev
TMLR
2022
Shared Certificates for Neural Network Verification
Marc Fischer*, Christian Sprecher*, Dimitar I. Dimitrov, Gagandeep Singh, Martin Vechev
CAV
2022
* Equal contribution
On Distribution Shift in Learning-based Bug Detectors
Jingxuan He, Luca Beurer-Kellner, Martin Vechev
ICML
2022
ZeeStar: Private Smart Contracts by Homomorphic Encryption and Zero-knowledge Proofs
Samuel Steffen, Benjamin Bichsel, Roger Baumgartner, Martin Vechev
IEEE S&P
2022
Fast and Optimal Sequence-to-Graph Alignment Guided by Seeds
Pesho Ivanov, Benjamin Bichsel, Martin Vechev
RECOMB
2022
Robust and Accurate - Compositional Architectures for Randomized Smoothing
Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin Vechev
SRML@ICLR
2022
Boosting Randomized Smoothing with Variance Reduced Classifiers
Miklós Z. Horváth, Mark Niklas Müller, Marc Fischer, Martin Vechev
ICLR
2022
Spotlight
Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound
Claudio Ferrari, Mark Niklas Müller, Nikola Jovanović, Martin Vechev
ICLR
2022
Provably Robust Adversarial Examples
Dimitar I. Dimitrov, Gagandeep Singh, Timon Gehr, Martin Vechev
ICLR
2022
Bayesian Framework for Gradient Leakage
Mislav Balunović, Dimitar I. Dimitrov, Robin Staab, Martin Vechev
ICLR
2022
PRIMA: General and Precise Neural Network Certification via Scalable Convex Hull Approximations
Mark Niklas Müller*, Gleb Makarchuk*, Gagandeep Singh, Markus Püschel, Martin Vechev
POPL
2022
* Equal contribution
The Fundamental Limits of Neural Networks for Interval Certified Robustness
Matthew Mirman, Maximilian Baader, Martin Vechev
TMLR
2022
2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin Vechev
NeurIPS
2021
Learning to Explore Paths for Symbolic Execution
Jingxuan He, Gishor Sivanrupan, Petar Tsankov, Martin Vechev
ACM CCS
2021
Machine Learning for Health -- Algorithm Auditing & Quality Control
Luis Oala, Andrew G. Murchison, Pradeep Balachandran, Shruti Choudhary, Jana Fehr, Alixandro Werneck Leite, Peter G. Goldschmidt, Christian Johner, Elora D. M. Schorverth, Rose Nakasi, Martin Meyer, Federico Cabitza, Pat Baird, Carolin Prabhu, Eva Weicken, Xiaoxuan Liu, Markus Wenzel, Steffen Vogler, Darlington Akogo, Shada Alsalamah, Emre Kazim, Adriano Koshiyama, Sven Piechottka, Sheena Macpherson, Ian Shadforth, Regina Geierhofer, Christian Matek, Joachim Krois, Bruno Sanguinetti, Matthew Arentz, Pavol Bielik, Saul Calderon-Ramirez, Auss Abbood, Nicolas Langer, Stefan Haufe, Ferath Kherif, Sameer Pujari, Wojciech Samek, Thomas Wiegand
Journal of Medical Systems
2021
Robustness Certification for Point Cloud Models
Tobias Lorenz, Anian Ruoss, Mislav Balunović, Gagandeep Singh, Martin Vechev
ICCV
2021
Scalable Polyhedral Verification of Recurrent Neural Networks
Wonryong Ryou, Jiayu Chen, Mislav Balunović, Gagandeep Singh, Andrei Dan, Martin Vechev
CAV
2021
PODS: Policy Optimization via Differentiable Simulation
Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, Stelian Coros
ICML
2021
Scalable Certified Segmentation via Randomized Smoothing
Marc Fischer, Maximilian Baader, Martin Vechev
ICML
2021
Automated Discovery of Adaptive Attacks on Adversarial Defenses
Chengyuan Yao, Pavol Bielik, Petar Tsankov, Martin Vechev
AutoML@ICML
2021
Oral
TFix: Learning to Fix Coding Errors with a Text-to-Text Transformer
Berkay Berabi, Jingxuan He, Veselin Raychev, Martin Vechev
ICML
2021
Unqomp: Synthesizing Uncomputation in Quantum Circuits
Anouk Paradis, Benjamin Bichsel, Samuel Steffen, Martin Vechev
PLDI
2021
Learning to Find Naming Issues with Big Code and Small Supervision
Jingxuan He, Cheng-Chun Lee, Veselin Raychev, Martin Vechev
PLDI
2021
Fast and Precise Certification of Transformers
Gregory Bonaert, Dimitar I. Dimitrov, Maximilian Baader, Martin Vechev
PLDI
2021
Certify or Predict: Boosting Certified Robustness with Compositional Architectures
Mark Niklas Müller, Mislav Balunović, Martin Vechev
ICLR
2021
DP-Sniper: Black-Box Discovery of Differential Privacy Violations using Classifiers
Benjamin Bichsel, Samuel Steffen, Ilija Bogunovic, Martin Vechev
IEEE S&P
2021
Scaling Polyhedral Neural Network Verification on GPUs
Christoph Müller*, François Serre*, Gagandeep Singh, Markus Püschel, Martin Vechev
MLSys
2021
* Equal contribution
Robustness Certification with Generative Models
Matthew Mirman, Alexander Hägele, Timon Gehr, Pavol Bielik, Martin Vechev
PLDI
2021
Metha: Network Verifiers Need To Be Correct Too!
Rüdiger Birkner*, Tobias Brodmann*, Petar Tsankov, Laurent Vanbever, Martin Vechev
USENIX NSDI
2021
* Equal contribution
Efficient Certification of Spatial Robustness
Anian Ruoss, Maximilian Baader, Mislav Balunović, Martin Vechev
AAAI
2021
2020
Learning Certified Individually Fair Representations
Anian Ruoss, Mislav Balunović, Marc Fischer, Martin Vechev
NeurIPS
2020
Certified Defense to Image Transformations via Randomized Smoothing
Marc Fischer, Maximilian Baader, Martin Vechev
NeurIPS
2020
zkay v0.2: Practical Data Privacy for Smart Contracts
Nick Baumann, Samuel Steffen, Benjamin Bichsel, Petar Tsankov, Martin Vechev
arXiv
2020
Probabilistic Verification of Network Configurations
Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, Martin Vechev
ACM SIGCOMM
2020
Best Student Paper Award
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin Vechev
ICML
2020
Learning Fast and Precise Numerical Analysis
Jingxuan He, Gagandeep Singh, Markus Püschel, Martin Vechev
PLDI
2020
λPSI: Exact Inference for Higher-order Probabilistic Programs
Timon Gehr, Samuel Steffen, Martin Vechev
PLDI
2020
Silq: A High-Level Quantum Language with Safe Uncomputation and Intuitive Semantics
Benjamin Bichsel, Maximilian Baader, Timon Gehr, Martin Vechev
PLDI
2020
Guiding Program Synthesis by Learning to Generate Examples
Larissa Laich, Pavol Bielik, Martin Vechev
ICLR
2020
Adversarial Training and Provable Defenses: Bridging the Gap
Mislav Balunović, Martin Vechev
ICLR
2020
Oral
Universal Approximation with Certified Networks
Maximilian Baader, Matthew Mirman, Martin Vechev
ICLR
2020
Config2Spec: Mining Network Specifications from Network Configurations
Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin Vechev
NSDI
2020
2021 IETF/IRTF Applied Networking Research Prize
VerX: Safety Verification of Smart Contracts
Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, Martin Vechev
IEEE S&P
2020
AStarix: Fast and Optimal Sequence-to-Graph Alignment
Pesho Ivanov, Benjamin Bichsel, Harun Mustafa, André Kahles, Gunnar Rätsch, Martin Vechev
RECOMB
2020
2019
Beyond the Single Neuron Convex Barrier for Neural Network Certification
Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, Martin Vechev
NeurIPS
2019
Learning to Infer User Interface Attributes from Images
Philippe Schlattner, Pavol Bielik, Martin Vechev
ArXiv
2019
Certifying Geometric Robustness of Neural Networks
Mislav Balunović, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin Vechev
NeurIPS
2019
zkay: Specifying and Enforcing Data Privacy in Smart Contracts
Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa Melchior, Petar Tsankov, Martin Vechev
ACM CCS
2019
Learning to Fuzz from Symbolic Execution with Application to Smart Contracts
Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, Martin Vechev
ACM CCS
2019
Online Robustness Training for Deep Reinforcement Learning
Marc Fischer, Matthew Mirman, Steven Stalder, Martin Vechev
arXiv
2019
DL2: Training and Querying Neural Networks with Logic
Marc Fischer, Mislav Balunović, Dana Drachsler-Cohen, Timon Gehr, Ce Zhang, Martin Vechev
ICML
2019
Unsupervised Learning of API Aliasing Specifications
Jan Eberhardt, Samuel Steffen, Veselin Raychev, Martin Vechev
PLDI
2019
Scalable Taint Specification Inference with Big Code
Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, Martin Vechev
PLDI
2019
Boosting Robustness Certification of Neural Networks
Gagandeep Singh, Timon Gehr, Markus Püschel, Martin Vechev
ICLR
2019
A Provable Defense for Deep Residual Networks
Matthew Mirman, Gagandeep Singh, Martin Vechev
ArXiv
2019
An Abstract Domain for Certifying Neural Networks
Gagandeep Singh, Timon Gehr, Markus Püschel, Martin Vechev
ACM POPL
2019
2018
Fast and Effective Robustness Certification
Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin Vechev
NIPS
2018
Robust Relational Layouts Synthesis from Examples for Android
Pavol Bielik, Marc Fischer, Martin Vechev
ACM OOPSLA
2018
Securify: Practical Security Analysis of Smart Contracts
Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, Martin Vechev
ACM CCS
2018
DEBIN: Predicting Debug Information in Stripped Binaries
Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, Martin Vechev
ACM CCS
2018
DP-Finder: Finding Differential Privacy Violations by Sampling and Optimization
Benjamin Bichsel, Timon Gehr, Dana Drachsler-Cohen, Petar Tsankov, Martin Vechev
ACM CCS
2018
NetHide: Secure and Practical Network Topology Obfuscation
Roland Meier, Petar Tsankov, Vincent Lenders, Laurent Vanbever, Martin Vechev
USENIX SECURITY
2018
Fast Numerical Program Analysis with Reinforcement Learning
Gagandeep Singh, Markus Püschel, Martin Vechev
CAV
2018
Training Neural Machines with Trace-Based Supervision
Matthew Mirman, Dimitar Dimitrov, Pavle Djordjevich, Timon Gehr, Martin Vechev
ICML
2018
Differentiable Abstract Interpretation for Provably Robust Neural Networks
Matthew Mirman, Timon Gehr, Martin Vechev
ICML
2018
Inferring Crypto API Rules from Code Changes
Rumen Paletov, Petar Tsankov, Veselin Raychev, Martin Vechev
PLDI
2018
Bayonet: Probabilistic Inference for Networks
Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, Martin Vechev
PLDI
2018
Incremental Inference for Probabilistic Programs
Marco Cusumano-Towner, Benjamin Bichsel, Timon Gehr, Martin Vechev, Vikash K. Mansinghka
PLDI
2018
Static Serializability Analysis for Causal Consistency
Lucas Brutschy, Dimitar Dimitrov, Peter Müller, Martin Vechev
PLDI
2018
AI2: Safety and Robustness Certification of Neural Networks with Abstract Interpretation
Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, Martin Vechev
IEEE S&P
2018
NetComplete: Practical Network-Wide Configuration Synthesis with Autocompletion
Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev
NSDI
2018
Net2Text: Query-Guided Summarization of Network Forwarding Behaviors
Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, Martin Vechev
NSDI
2018
Fine-grained Semantics for Probabilistic Programs
Benjamin Bichsel, Timon Gehr, Martin Vechev
ESOP
2018
Practical Concurrent Traversals in Search Trees
Dana Drachsler-Cohen, Martin Vechev, and Eran Yahav
ACM PPoPP
2018
A Practical Construction for Decomposing Numerical Abstract Domains
Gagandeep Singh, Markus Püschel, Martin Vechev
ACM POPL
2018
Automatic Verification of RMA Programs via Abstraction Extrapolation
Cedric Baumann, Andrei Marian Dan, Yuri Meshman, Torsten Hoefler, Martin Vechev
VMCAI
2018
2017
Synthesis of Probabilistic Privacy Enforcement
Martin Kucera, Petar Tsankov, Timon Gehr, Marco Guarnieri, Martin Vechev
ACM CCS
2017
Network-wide Configuration Synthesis
Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, Martin Vechev
CAV
2017
Finding Fix Locations for CFL-Reachability Analyses via Minimum Cuts
Andrei Dan, Manu Sridharan, Satish Chandra, Jean-Baptiste Jeannin, Martin Vechev
CAV
2017
Learning Disjunctions of Predicates
Nader H. Bshouty, Dana Drachsler-Cohen, Martin Vechev, Eran Yahav
COLT
2017
Serializability for Eventual Consistency: Criterion, Analysis, and Applications
Lucas Brutschy, Dimitar Dimitrov, Peter Müller, Martin Vechev
ACM POPL
2017
Program Synthesis for Character Level Language Modeling
Pavol Bielik, Veselin Raychev, Martin Vechev
ICLR
2017
2016
Functionality-Aware Security Enforcement
Petar Tsankov, Marco Pistoia, Omer Tripp, Martin Vechev, Pietro Ferrara
ACM ACSAC
2016
Probabilistic Model for Code with Decision Trees
Veselin Raychev, Pavol Bielik, Martin Vechev
ACM OOPSLA
2016
Learning Programs from Noisy Data
Veselin Raychev, Pavol Bielik, Martin Vechev, Andreas Krause
ACM POPL
2016
PSI: Exact Symbolic Inference for Probabilistic Programs
Timon Gehr, Sasa Misailovic, Martin Vechev
CAV
2016
SDNRacer: Concurrency Analysis for Software-Defined Networks
Ahmed El-Hassany, Jeremie Miserez, Pavol Bielik, Laurent Vanbever, Martin Vechev
ACM PLDI
2016
Modeling and Analysis of Remote Memory Access Programming
Andrei Dan, Patrick Lam, Torsten Hoefler, Martin Vechev
ACM OOPSLA
2016
Statistical Deobfuscation of Android Applications
Benjamin Bichsel, Veselin Raychev, Peter Tsankov, Martin Vechev
ACM CCS
2016
2015
Predicting Program Properties from "Big Code"
Veselin Raychev, Martin Vechev, Andreas Krause
ACM POPL
2015
An Interactive System for Data Structure Development
Jibin Ou, Otmar Hilliges, Martin Vechev
ACM CHI
2015
SDNRacer: Detecting Concurrency Violations in Software-Defined Networks
Jeremie Miserez, Pavol Bielik, Ahmed El-Hassany, Laurent Vanbever, Martin Vechev
SOSR
2015
Stateless Model Checking of Event-Driven Applications
Casper Svenning Jensen, Anders Møller, Veselin Raychev, Dimitar Dimitrov, Martin Vechev
ACM OOPSLA
2015
Effective Abstractions for Verification under Relaxed Memory Models
Andrei Dan, Yuri Meshman, Martin Vechev, Eran Yahav
VMCAI
2015
Scalable Race Detection for Android Applications
Pavol Bielik, Veselin Raychev, Martin Vechev
ACM OOPSLA
2015
Programming with Big Code: Lessons, Techniques and Applications
Pavol Bielik, Veselin Raychev, Martin Vechev
SNAPL
2015
2014
Verifying Atomicity via Data Independence
Ohad Shacham, Eran Yahav, Guy Gueta, Alex Aiken, Nathan Bronson, Mooly Sagiv and Martin Vechev
ISSTA
2014
Code Completion with Statistical Language Models
Veselin Raychev, Martin Vechev, Eran Yahav
ACM PLDI
2014
Synthesis of Memory Fences via Refinement Propagation
Yuri Meshman, Andrei Dan, Martin Vechev, Eran Yahav
SAS
2014
Phrase-Based Statistical Translation of Programming Languages
Svetoslav Karaivanov, Veselin Raychev, Martin Vechev
Onward
2014
Practical Concurrent Binary Search Trees via Logical Ordering
Dana Drachsler, Martin Vechev and Eran Yahav
ACM PPoPP
2014
Commutativity Race Detection
Dimitar Dimitrov, Veselin Raychev, Martin Vechev, Eric Koskinen
ACM PLDI
2014
2013
Refactoring with Synthesis
Veselin Raychev, Max Schaefer, Manu Sridharan, Martin Vechev
ACM OOPSLA
2013
Effective Race Detection for Event-Driven Programs
Veselin Raychev, Martin Vechev, Manu Sridharan
ACM OOPSLA
2013
Automatic Synthesis of Deterministic Concurrency
Veselin Raychev, Martin Vechev, Eran Yahav
Static Analysis Symposium (SAS)
2013
Predicate Abstraction for Relaxed Memory Models
Andrei Dan, Yuri Meshman, Martin Vechev, Eran Yahav
Static Analysis Symposium (SAS)
2013
2012
Scalable and Precise Dynamic Datarace Detection for Structured Parallelism
Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, Eran Yahav
ACM PLDI
2012
Race Detection for Web Applications
Boris Petrov, Martin Vechev, Manu Sridharan, Julian Dolby
ACM PLDI
2012
Dynamic Synthesis for Relaxed Memory Models
Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin Vechev, Eran Yahav
ACM PLDI
2012
2011
Testing Atomicity of Composed Concurrent Operations
Ohad Shacham, Nathan Bronson, Alex Aiken, Mooly Sagiv, Martin Vechev and Eran Yahav
ACM OOPSLA
2011
Sprint: Speculative Prefetching of Remote Data
Arun Raman, Greta Yorsh, Martin Vechev and Eran Yahav
ACM OOPSLA
2011
Partial-Coherence Abstractions for Relaxed Memory Models
Michael Kuperstein, Martin Vechev and Eran Yahav
ACM PLDI
2011
Laws of Order: Expensive Synchronization in Concurrent Algorithms Cannot be Eliminated
Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael and Martin Vechev
ACM POPL, ACM TOPLAS
2011
QVM: An Efficient Runtime for Detecting Defects in Deployed Systems
Mathew Arnold, Martin Vechev, Eran Yahav
ACM TOSEM (ACM Transactions on Software Engineering and Methodology)
2011
Asynchronous Assertions
Eddie Aftandilian, Samuel Guyer, Martin Vechev and Eran Yahav
ACM OOPSLA
2011
2010
Parallel Checking of Expressive Heap Assertions
Martin Vechev, Eran Yahav and Greta Yorsh
ACM ISMM
2010
Automatic Verification of Determinism for Structured Parallel Programs
Martin Vechev, Eran Yahav, Raghavan Raman and Vivek Sarkar
Static Analysis Symposium (SAS)
2010
Abstraction-Guided Synthesis Of Synchronization
Martin Vechev, Eran Yahav and Greta Yorsh
ACM POPL
2010
Efficient Data Race Detection for Async-Finish Parallelism
Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev and Eran Yahav
Runtime Verification (RV)
2010
Best Paper Award
Verifying Linearizability with Hindsight
Peter O'Hearn, Noam Rinetzky, Martin Vechev, Eran Yahav and Greta Yorsh
ACM PODC
2010
Automatic Inference of Memory Fences
Michael Kuperstein, Martin Vechev and Eran Yahav
Formal Methods in Computer Aided Design (FMCAD)
2010
2009
Inferring Synchronization under Limited Observability
Martin Vechev, Eran Yahav, Greta Yorsh
TACAS
2009
Position Paper: Verifying Optimistic Algorithms Should be Easy
Noam Rinetzky, Martin Vechev, Eran Yahav and Greta Yorsh
EC2: Exploiting Concurrency Efficiently and Correctly -- CAV Workshop
2009
2008
Position Paper: Computer-Assisted Construction of Efficient Concurrent Algorithms
Martin Vechev, Eran Yahav, Maged Michael, Hagit Attiya, Greta Yorsh
EC2: Exploiting Concurrency Efficiently and Correctly -- CAV Workshop
2008
Position Paper: Computer-Assisted Construction of Efficient Concurrent Algorithms
Martin Vechev and Eran Yahav
ACM PLDI
2008
QVM: An Efficient Runtime for Detecting Defects in Deployed Systems
Mathew Arnold, Martin Vechev, Eran Yahav
ACM OOPSLA
2008
2007
CGCExplorer: A Semi-Automated Search Procedure for Provably Correct Concurrent Collectors
Martin Vechev, Eran Yahav, David F. Bacon and Noam Rinetzky
ACM PLDI
2007
2006
Correctness-Preserving Derivation of Concurrent Garbage Collection Algorithms
Martin Vechev, Eran Yahav, David F. Bacon
ACM PLDI
2006
2005
CDerivation And Evaluation Of Concurrent Collectors
Martin Vechev, David F. Bacon, Perry Cheng, David Grove
ECOOP
2005
Syncopation: Generational Real-time Garbage Collection in the Metronome
David F. Bacon, Perry Cheng, David Grove, Martin Vechev
ACM LCTES
2005
High-level Real-time Programming in Java
David F. Bacon, Perry Cheng, David Grove, Michael Hind, V.T. Rajan, Eran Yahav, M. Hauswirth, C. Kirsch, Daniel Spoonhower, and Martin T. Vechev
ACM EMSOFT
2005
2004
Write Barrier Elision for Concurrent Garbage Collectors
Martin Vechev and David F. Bacon
ACM ISMM
2004