Program Analysis for System Security and Reliability

Petar Tsankov
Spring 2018
Where are we now?

Programmable Networks

Blockchain Security

Attacks and Defenses of Deep Learning

Probabilistic Security
Today: Synthesis of Probabilistic Privacy Enforcement

- Define attacker knowledge and privacy
- Define enforcement
- See how to automatically synthesize correct enforcement
Motivation: Processing Private Data

Public output reveals information about confidential input. We want to restrict the amount of revealed information in some way.
Example: Genomic Data

Each patient has a pair of a red or green gene
Carol is a child of Alice and Bob
Example: Genomic Data

Each patient has a pair of a red or green gene
Carol is a child of Alice and Bob

Eve (medical researcher)
Each patient has a pair of a red or green gene
Carol is a child of Alice and Bob
Example: Censor Bob’s data

Input (confidential)

Program (censors data)

Output (public)
Example: Censor Bob’s data

Input (confidential)

Program (censors data)

Output (public)

Can Eve learn anything about Bob’s genes?
Example: Censor Bob’s data
Example: Censor Bob’s data

Carol inherits her genes from Alice and Bob
Example: Censor Bob’s data

Carol inherits her genes from Alice and Bob

Bob must have at least one red gene

Eve
In General: Bayesian Inference

- **Initial attacker belief**
- **Revised attacker belief**

1. **Initial attacker belief**
2. **Revised attacker belief**

Prior

\[P(I = i) \]

Query

\[P(O = o | I = i) \]

Joint Prior

\[P(I = i, O = o) \]

Posterior

\[P(I = i | O = o) \]
Privacy Policies and Verification

Given: Attacker belief δ, program π and privacy policy Φ.

Check: Could running the program π violate the policy Φ?

\[
\Phi \equiv \forall o. P(I \in S \mid O = o) \in [a, b]
\]

Secret $S \subseteq I$: An event

Belief bound: $[a, b] \subseteq [0, 1]$

In general: Multiple policies Φ_1, \ldots, Φ_k.
Privacy Policies and Verification

Given: Attacker belief δ, program π and privacy policy Φ.

Check: Could running the program π violate the policy Φ?

\[
\Phi \equiv \forall o. P(I \in S \mid O = o) \in [a, b]
\]

Secret $S \subseteq I$: An event

Belief bound: $[a, b] \subseteq [0, 1]$

In general: Multiple policies Φ_1, \ldots, Φ_k.

Why do we need to check for all inputs?
Example: Counting Red Alleles

Input (confidential)

Program (counts red genes)

Policy: $\forall i, o. P(\text{genes}(i) = [\text{red}, \text{red}]) \mid O = o \in [0, 0.75]$

Question: Can Eve run this program?

Output (public)
Example: Counting Red Alleles

Input
(confidential)

Program
(counts red genes)

Policy: $\forall i, o. P(\text{genes}(i) = [\text{red}, \text{red}]) | O = o \in [0, 0.75]$

Question: Can Eve run this program?

NO. (e.g. $o = 6$ reveals all genes)

Output (public)
Example: Counting Red Alleles

Policy: \(\forall i, o. P(\text{genes}(i)) = [\text{red}, \text{red}] \mid O = o \in [0, 0.75] \)

Question: Can Eve run this program?

NO. (e.g. \(o = 6 \) reveals all genes)

How can Eve adapt her program?
Example: Counting Red Alleles

Input (confidential)

Program (counts red genes)

Policy: $\forall i, o. P(\text{genes}(i) = [\text{red}, \text{red}]) \mid O = o \in [0, 0.75]$

Question: Can Eve run this program?

NO. (e.g. $o = 6$ reveals all genes)

Use program synthesis to adapt the program automatically

How can Eve adapt her program?
def query(patient: Patient[]){
 numRed := 0;
 for i in [0..3]{
 for j in [0..2]{
 if patient[i].red[j]{
 numRed += 1;
 }
 }
 }
 return numRed;
}
def query(patient: Patient[]):
 numRed := 0;
 for i in [0..3]:
 for j in [0..2]:
 if patient[i].red[j]:
 numRed += 1;
 return numRed;

Policy: \(\forall i, o. P(\text{genes}(i) = [r, r] | O = o) \in [0, 0.75] \)

\(P(\text{genes}(i) = (r, r) | o = 6) = 1 \)
def query (patient : Patient []) {
 num Red := 0;
 for i in [0 .. 3] {
 for j in [0 .. 2] {
 if patient [i]. red [j]{
 num Red += 1;
 }
 }
 }
 if num Red in [5 , 6] {
 return pick ([5 , 6]) ;
 }
 return num Red ;
}
Repairing the Program

Policy: \(\forall i, o. P(\text{genes}(i) = \textcolor{red}{\begin{bmatrix} \bullet \end{bmatrix}}, \textcolor{red}{\begin{bmatrix} \bullet \end{bmatrix}} | O = o) \in [0, 0.75] \)

```python
def query(patient: Patient[]):
    numRed := 0;
    for i in [0 .. 3]:
        for j in [0 .. 2]:
            if patient[i].red[j]:
                numRed += 1;
    if numRed in [5, 6]:
        return pick([5, 6])
    return numRed;
```

\[P(\text{genes}(c) = (r, r) | o = 5) = 1 \]
Repairing the Program

Policy: $\forall i, o. P(\text{genes}(i) = [\text{\#}, \text{\#}] | O = o) \in [0,0.75]$

```python
1 def query(patient: Patient[]){
2     numRed := 0;
3     for i in [0..3]{
4         for j in [0..2]{
5             if patient[i].red[j]{
6                 numRed += 1;
7             }
8         }
9     }
10     if numRed in [4, 5, 6] {
11         return pick([4, 5, 6]);
12     }
13     return numRed;
14 }
```
def query(patient: Patient[]):
 numRed := 0;
 for i in [0..3]:
 for j in [0..2]:
 if patient[i].red[j]:
 numRed += 1;
 if numRed in [4, 5, 6]:
 return pick([4, 5, 6]);
 return numRed;

Policy: ∀i, o. P(genes(i) = [r, r] | O = o) ∈ [0, 0.75]

\[P(\text{genes}(c) = (r, r) \mid o = 4) \approx 0.73844 \]
(Prior: P(g) = 0.77, P(r) = 0.23.)
Our Approach: Synthesis of Enforcement

Program π → SPIRE → Policy-compliant program π'

Attacker belief δ

Policies Ψ
Implementation using Probabilistic Programs

Attacker belief δ

```python
1 def patient(): Patient{
2   return Patient([Bern(0.77), Bern(0.77)])
3 }
4 def child(a: Patient, b: Patient): Patient{
5   allele := shuffle([a.allele[Bern(1/2)], b.allele[Bern(1/2)]]);
6   return Patient(allele);
7 }
8 def prior(){
9   (alice, bob) := (patient(), patient());
10  carol := child(alice, bob);
11  patients := [alice, bob, carol];
12  return patients;
13 }
```
Implementation using Probabilistic Programs

Query π

```python
def query(patient: Patient[]){
    numRed := 0;
    for i in [0..3]{
        for j in [0..2]{
            if patient[i].red[j]{
                numRed += 1;
            }
        }
    }
    return numRed;
}
```
Implementation using Probabilistic Programs

Secrets Ψ

```python
def secret(i, patients: Patient[]): // interval: [0, 0.75]
    patient := patients[i];
    return patient.allele[0] == RED &&
    patient.allele[1] == RED;
```
Implementation using Probabilistic Programs

Inference Query: $P(O = o)$

```python
1 def outputProb(o):
2     input := prior();
3     output := query(input);
4     return output == o;
5 }
```

Inference Query: $P(I \in S | O = o)$

```python
1 def secretProb(i, o):
2     input := prior();
3     output := query(input);
4     observe(output == o);
5     return secret(i, input);
6 }
```
Privacy Enforcement

Enforcement ξ is an equivalence relation over O such that

$$\forall o. P(I \in S \mid O \in [o]_{\xi}) \in [a, b]$$

Intuition: Only report $[o]_{\xi}$ instead of o. Conflate outputs.
Notions of Optimality

Permissiveness
Permissiveness of enforcement ξ is $|O/\xi|$
(Number of equivalence classes.)

Precision
Precision of enforcement ξ is $|\{o \in O \mid |[o]_\xi| = 1\}|$
(Number of equivalence classes of size 1.)
Complexity Results

Given: Probabilities $P(O = o), P(I \in S \mid O = o)$ for all o

Want: Enforcement ξ ($\forall o. P(I \in S \mid O \in [o]_\xi \in [a, b])$

Permissiveness

Theorem: Synthesis of optimally permissive enforcement ξ is NP-equivalent (NP-hard and NP-easy).

Precision

Theorem: Synthesis of optimally precise enforcement ξ of a single policy is possible in $O(n \log n)$ time ($n = |O|$).
Optimally Permissive Enforcement with SMT

Probabilistic program π:

Attacker belief δ:

Privacy policy Φ:

\[
\begin{align*}
\text{Probabilities } &\ P_\delta^\pi(O = \cdot) \text{ and } P_\delta^\pi(I \in S_i \mid O = \cdot): \\
&\ P_\delta^\pi(O = 0) = \frac{26}{64} \quad P_\delta^\pi(I \in S_1 \mid O = 0) = \frac{29}{29} \quad P_\delta^\pi(I \in S_2 \mid O = 0) = \frac{28}{29} \\
&\ P_\delta^\pi(O = 1) = \frac{1}{16} \quad P_\delta^\pi(I \in S_1 \mid O = 1) = \frac{1}{4} \quad P_\delta^\pi(I \in S_2 \mid O = 1) = \frac{4}{5} \\
&\ P_\delta^\pi(O = 2) = \frac{11}{64} \quad P_\delta^\pi(I \in S_1 \mid O = 2) = \frac{6}{11} \quad P_\delta^\pi(I \in S_2 \mid O = 2) = \frac{4}{11} \\
&\ P_\delta^\pi(O = 3) = \frac{1}{16} \quad P_\delta^\pi(I \in S_1 \mid O = 3) = \frac{3}{4} \quad P_\delta^\pi(I \in S_2 \mid O = 3) = 0
\end{align*}
\]

SMT constraints / Objective function:

\[
\begin{align*}
\psi_{\text{assert}} &\equiv \psi_{\text{range}} \land \psi_{\text{bounds}} \\
\psi_{\text{range}} &\equiv \land_{i=1}^{4} C_i \geq 1 \land C_i \leq 4 \\
\psi_{\text{bounds}} &\equiv (\land_{i=1}^{4} p_1^i \in [0.1, 0.5]) \land (\land_{i=1}^{4} p_2^i \in [0.5, 0.9]) \\
p_1^i &\equiv \frac{[C_1 = i] \cdot \frac{1}{32} + [C_2 = i] \cdot \frac{5}{64} + [C_3 = i] \cdot \frac{3}{32} + [C_4 = i] \cdot \frac{3}{64}}{[C_1 = i] \cdot 89 \cdot 64 + [C_2 = i] \cdot \frac{5}{64} + [C_3 = i] \cdot 1 \cdot 64 + [C_4 = i] \cdot \frac{1}{16}} \\
p_2^i &\equiv \frac{[C_1 = i] \cdot \frac{7}{16} + [C_2 = i] \cdot \frac{1}{4} + [C_3 = i] \cdot \frac{1}{16} + [C_4 = i] \cdot 0}{[C_1 = i] \cdot \frac{29}{64} + [C_2 = i] \cdot \frac{5}{64} + [C_3 = i] \cdot \frac{11}{64} + [C_4 = i] \cdot \frac{1}{16}} \\
\psi_{\text{obj}} &\equiv \text{maximize}(\{C_1 = 1 \lor C_2 = 1 \lor C_3 = 1 \lor C_4 = 1\} \\
&\quad \cdots \{C_1 = 4 \lor C_2 = 4 \lor C_3 = 4 \lor C_4 = 4\}) \\
\end{align*}
\]

Model: $M = \{C_1 \mapsto 1, C_2 \mapsto 2, C_3 \mapsto 1, C_4 \mapsto 2\}$

\[\xi := \ker(M)\]

Equivalence classes: $O / \xi = \{\{0, 2\}, \{1, 3\}\}$
Pick most violating class.
Select candidate to merge.
Merge, repeat.
Greedy Heuristic for Permissive Enforcement

1. Pick most violating class.
2. Select candidate to merge.

Diagram:

- \(p^{\delta,\pi}_{\{0\}} \) at \((a_1, b_2)\)
- \(p^{\delta,\pi}_{\{1\}} \) at \((a_2, b_2)\)
- \(p^{\delta,\pi}_{\{1,3\}} \) at \((a_1, b_2)\)
- \(p^{\delta,\pi}_{\{2\}} \) at \((a_2, b_2)\)
- \(p^{\delta,\pi}_{\{3\}} \) at \((a_1, b_2)\)

Dashed line represents the merging process.
Greedy Heuristic for Permissive Enforcement

Pick most violating class.
Select candidate to merge.
Merge, repeat.
Greedy Heuristic for Permissive Enforcement

Pick most violating class.
Select candidate to merge.
Merge, repeat.
Optimal Algorithm for Precise Enforcement

Recall: Want to maximize number of singleton classes.
Recall: Want to maximize number of singleton classes.

Algorithm

- Join all violating classes into class C
Optimal Algorithm for Precise Enforcement

Recall: Want to maximize number of singleton classes.

Algorithm

- Join all violating classes into class C

- If non-violating, done. Otherwise wlog, $P(S \mid o \in C) > b$
Optimal Algorithm for Precise Enforcement

Recall: Want to maximize number of singleton classes.

Algorithm

• Join all violating classes into class C

• If non-violating, done. Otherwise wlog, $P(S \mid o \in C) > b$

• Need to merge more outputs into C such that

\[
P(I \in S \mid o \in C) = \frac{\sum_{o \in C} P(I \in S \mid O = o) \cdot P(O = o)}{\sum_{o \in C} P(O = o)} \leq b
\]
Recall: Want to maximize number of singleton classes.

Algorithm

- Join all violating classes into class C
- If non-violating, done. Otherwise wlog, $P(S \mid o \in C) > b$
- Need to merge more outputs into C such that
 \[
 P(I \in S \mid o \in C) = \frac{\sum_{o \in C} P(I \in S \mid O = o) \cdot P(O = o)}{\sum_{o \in C} P(O = o)} \leq b
 \]
- Sort by contribution, pick smallest first, merge into C
System: SPIRE

Implementation: http://www.srl.inf.ethz.ch/probabilistic_security

Approach requires exact probabilistic inference. Tools used:

PSI SOLVER
(Exact probabilistic inference.)

z3
(NP oracle.)
Benchmarks

3 scenarios, 10 queries

Genomic Data

Social Network

Location Data
PSI Times for Inference

(a) Genomic Data

(b) Social

(c) Location
SMT Times for Optimal Synthesis

(a) Genomic Data

(b) Social
Scalability of Heuristic

![Graph showing the relationship between the number of outputs and time in seconds. The x-axis represents the number of outputs ranging from 1K to 10K, and the y-axis represents time in seconds ranging from 0 to 400. The graph shows an upward trend, indicating increased time with increased outputs.]
SMT vs. Heuristic

Permissiveness

Optimally solved instances:
- Medical: 82%, Social: 95%

Average \(|O/\xi_{\text{Heuristic}}|/|O/\xi_{\text{OPT}}|\) percentage:
- Medical: 91%, Social: 98%

Precision

Optimally solved instances:
- Medical: 100%, Social: 100%

Average percentage of number of singleton classes:
- Medical: 100%, Social: 100%
Summary

Program π

Attacker belief δ
Policies Ψ

SPIRE

Policy-compliant program π'
Next Time: Statistical De-obfuscation

Useful Links

Synthesis of Probabilistic Privacy Enforcement

Dynamic Enforcement of Knowledge-based Security Policies using Probabilistic Abstract Interpretation