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Abstract
We present a new approach for predicting program properties from
massive codebases (aka “Big Code”). Our approach first learns a
probabilistic model from existing data and then uses this model to
predict properties of new, unseen programs.

The key idea of our work is to transform the input program into
a representation which allows us to phrase the problem of infer-
ring program properties as structured prediction in machine learn-
ing. This formulation enables us to leverage powerful probabilistic
graphical models such as conditional random fields (CRFs) in order
to perform joint prediction of program properties.

As an example of our approach, we built a scalable prediction
engine called JSNICE1 for solving two kinds of problems in the
context of JavaScript: predicting (syntactic) names of identifiers
and predicting (semantic) type annotations of variables. Experi-
mentally, JSNICE predicts correct names for 63% of name iden-
tifiers and its type annotation predictions are correct in 81% of the
cases. In the first week since its release, JSNICE was used by more
than 30, 000 developers and in only few months has become a pop-
ular tool in the JavaScript developer community.

By formulating the problem of inferring program properties as
structured prediction and showing how to perform both learning
and inference in this context, our work opens up new possibilities
for attacking a wide range of difficult problems in the context of
“Big Code” including invariant generation, de-compilation, synthe-
sis and others.

1. Introduction
The increased amounts of freely available high quality programs in
code repositories such as GitHub2 (a situation termed “Big Code”
[7] by a recent initiative) creates a unique opportunity for new kinds
of programming tools based on statistical reasoning. These tools
will extract useful information from existing codebases and will use
that information to provide statistically likely solutions to problems
that are difficult or impossible to solve with traditional rule based
techniques.

1 http://jsnice.org
2 http://github.com
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Figure 1. Statistical Prediction of Program Properties.

In this work we focus on the general problem of inferring pro-
gram properties. We introduce a novel statistical approach which
predicts properties of a given program by learning a probabilistic
model from existing codebases already annotated with such proper-
ties. We use the term program property to encompass both: classic
semantic properties of programs (e.g. type annotations) as well as
syntactic program elements (e.g. identifiers or code). Our approach
is fairly general and can serve as a basis for various kinds of statis-
tical invariant predictions and statistical code synthesizers [24].

The core technical insight of our work is transforming the input
program into a representation that enables us to formulate the prob-
lem of inferring program properties (be it semantic or syntactic) as
structured prediction with conditional random fields (CRFs) [17],
a powerful undirected graphical model successfully used in a wide
variety of applications including computer vision, information re-
trieval, and natural language processing [4, 10, 17, 21, 22].

To our knowledge, this is the first work which shows how to
leverage CRFs in the context of programs. By connecting programs
to CRFs, our work also enables immediate reuse of state-of-the-art
learning and inference algorithms [14] to the domain of programs.

Fig. 1 illustrates our two-phase structured prediction approach.
In the prediction phase (shown on top), we are given an input
program for which we are to infer properties of interest. In the next
step, we convert the program into a representation which we call a
dependency network. The essence of the dependency network is to
capture relationships between program elements whose properties
are to be predicted with elements whose properties are known.
Once the network is obtained, we perform structured prediction and
in particular, a query referred to as Maximum a Posteriori (MAP)
inference [14]. This query makes a joint prediction for all elements
together by optimizing a scoring function based on the learned
CRF model. Making a joint prediction which takes into account
structure and dependence is particularly important as properties of
different elements are often related. A useful analogy is the ability
to make joint predictions in image processing where the prediction
of a pixel label is influenced by the predictions of neighboring
pixels. To achieve good performance for the MAP inference, we
developed a new algorithmic variant which targets the domain
of programs (existing inference algorithms cannot efficiently deal



with the combination of unrestricted network structure and massive
number of possible predictions per element). Finally, we output a
program where the newly predicted properties are incorporated. In
the learning phase, we find a good scoring function by learning a
CRF model from a large training set of programs. Here, because we
deal with CRFs and MAP inference queries, we are able to leverage
state-of-the-art max-margin CRF training methods [26].

JSNICE : name and type inference for JavaScript As an ex-
ample of our approach, we built a system called JSNICE which
addresses two important challenges in JavaScript: predicting (syn-
tactic) identifier names and predicting (semantic) type annotations
of variables. We focused on JavaScript for three reasons. First,
in terms of type inference, recent years have seen extensions of
JavaScript that add type annotations [6, 28]. However, these ex-
tensions rely on traditional type inference which does not scale to
realistic programs that make use of dynamic evaluation and com-
plex libraries (e.g. jQuery) [11]. Our work predicts likely type an-
notations for real world programs which can then be provided to
the programmer or to a standard type checker. Second, much of
JavaScript code found on the Web is obfuscated, making it difficult
to understand what the code is doing. Our approach recovers likely
identifier names thereby making the code readable again. Finally,
JavaScript programs are readily available in source code reposito-
ries (e.g. GitHub) meaning that we can obtain a large set of high
quality training programs.

Main contributions The contributions of this paper are:

• A new approach for inferring likely program facts based on
structured prediction with conditional random fields (CRFs).
• A new framework consisting of fast and approximate inference

and learning algorithms tailored to structured prediction tasks
in programs.
• A new system, JSNICE, which is an instance of our ap-

proach focusing on predicting names and type annotations of
JavaScript programs. A week after its release3, JSNICE was
used by > 30, 000 developers and has since become a popular
tool in the JavaScript developer community.
• An evaluation on a range of real-world JavaScript programs.

The experimental results indicate that JSNICE successfully pre-
dicts correct names for 63.4% of program identifiers and 81.6%
of the guessed type annotations are correct.

Paper structure The paper is organized as follows. Section 2 il-
lustrates our approach on an example. Section 3 introduces the gen-
eral prediction framework, while Section 4 describes JSNICE, an
instantiation of that framework. Section 5 and Section 6 discuss our
structured prediction and learning procedures. Section 7 presents a
detailed experimental evaluation of JSNICE. In Section 8 we elab-
orate on our design choices and explain why and how we arrived
at using structured prediction with CRFs. Finally, in Section 9 we
discuss related work in detail and conclude in Section 10.

2. Overview
In this section we provide an informal description of our statistical
inference approach on a running example. Consider the JavaScript
program shown in Fig. 2(a). This is a program which has short,
non-descriptive identifier names. Such names can be produced by
both a novice inexperienced programmer or by an automated pro-
cess known as minification (a form of obfuscation) which replaces
identifier names with shorter names. In the case of client-side
JavaScript, minification is a common process on the Web and is

3 http://jsnice.org

used to reduce the size of the code being transferred over the net-
work and/or to prevent users from understanding what the program
is actually doing. In addition to obscure names, variables in this
program also lack annotated type information. The net effect is that
it is difficult to understand what the program actually does, which
is that it partitions an input string into chunks of given sizes and
stores those chunks into consecutive entries of an array.

Given the program in Fig. 2(a), our system produced the pro-
gram in Fig. 2(e). The output program has new identifier names
and is annotated with predicted types for the parameters, the local
variables and the return statement. Overall, it is easier to understand
what that program does when compared to the input program. Next,
we provide an overview of the prediction procedure. We focus on
predicting names, but the process for predicting types is identical.

Determine known and unknown properties Given the program
in Fig. 2(a), we first determine the set of program elements for
which we would like to infer properties. These are elements for
which the properties to be inferred are currently unknown. For ex-
ample, in the case of name inference, this set of elements includes
the local variables of the input program: e, t, n, r, and i. We
also determine the set of elements whose properties are known. One
such element is the name of the field length in the input program
or the names of the methods. Both kinds of elements are shown in
Fig. 2(b). The goal of our prediction task is to predict the unknown
properties based on: i) the obtained known properties, and ii) the
relationship between various elements (discussed below).

Build dependency network Next, we build a dependency network
capturing various kinds of relationships between program elements.
The dependency network is key to capturing structure when per-
forming predictions and intuitively captures how properties which
are to be predicted influence each other. For example, the link be-
tween known and unknown properties allows us to leverage the fact
that many programs use common anchors (e.g. common API’s such
as JQuery) meaning that the unknown quantities we aim to predict
are influenced by the way the known elements are used by the pro-
gram. Further, the link between two unknown properties signifies
that the prediction for the two properties is related in some way. De-
pendencies are triplets of the form 〈n,m,rel〉 where n and m are
program elements and rel is the particular relationship between
the two elements. In our work all dependencies are triplets, but in
general, they can be extended to other more complex relationships.

In Fig. 2(c), we show three example dependencies between the
program elements. For instance, the statement i += t gener-
ates a dependency 〈i,t,L+=R〉, because i and t are on the
left and right side of a += expression. Similarly, the statement
var r = e.length generates several dependencies including
〈r,length,L=_.R〉 which designates that the left part of the

relationship, denoted by L, appears before the de-reference of the
right side denoted by R (we elaborate on the different types of re-
lationships later in the paper). For clarity, in Fig. 2(c) we include
only some of the relationships.

MAP inference After obtaining the dependency network of a
program, the next step is to infer the most likely values (according
to a probabilistic model learned from data) for the nodes of the
network, a query referred to as MAP inference [14]. As illustrated
in Fig. 2(d), for the network of Fig. 2(c), our system infers the new
names step and len. It also inferred that the previous name i
was most likely.

Let us consider how we predicted the names step and len.
Consider the network in Fig. 2(d). This is the same network as
in Fig. 2(c) but with additional tables we elaborate on now (these
tables are produced as an output of the learning phase). Each table
is a function that scores the assignment of properties for the nodes
connected by the corresponding edge. The function takes as input



function chunkData(e, t) {
var n = [];
var r = e.length;
var i = 0;
for (; i < r; i += t) {
if (i + t < r) {

n.push(e.substring(i, i + t));
} else {

n.push(e.substring(i, r));
}

}
return n;

}

/* str: string, step: number, return: Array */
function chunkData(str, step) {
var colNames = []; /* colNames: Array */
var len = str.length;
var i = 0; /* i: number */
for (; i < len; i += step) {
if (i + step < len) {

colNames.push(str.substring(i, i + step));
} else {
colNames.push(str.substring(i, len));

}
}
return colNames;

}

(a) JavaScript program with minified identifier names (e) JavaScript program with new identifier names and types

Unknown properties (variable names):

? ? ? ? ?
e t n r i

Known properties (constants, APIs):
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(c) Dependency network
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i len 0.8
i length 0.6

L R Score

length length 0.5
len length 0.4

(d) Result of MAP inference

Figure 2. A JavaScript program with new names and type annotations, along with an overview of the name inference procedure.

two properties and returns the score for the pair (intuitively, how
likely is the particular pair). In Fig. 2(d), each table shows possible
functions for the three kinds of relationships we have.

Let us consider the topmost table. The first row says that the
assignment of i and step is scored with 0.5. The MAP inference
tries to find an assignment of properties to the nodes so that the
assignment maximizes a particular scoring function. For the two
nodes i and t, the inference ends up selecting the highest score
from the table (i.e., the values i and step). Similarly for the
nodes i and r. However, for nodes r and length, the inference
does not select the topmost row but selects values from the second
row. The reason is that if it had selected the topmost row, then
the only viable choice (in order to match the value length) for
the remaining relationship is the second row of that table (with
value 0.6). However, the assignment 0.6 leads to a lower combined
overall score. That is, the MAP inference must take into account the
structure and dependencies between the nodes and cannot simply
select the maximal score of each function and then stop.

Output program Finally, after the new names are inferred, our
system transforms the original program to use these names. The
output of the entire inference process is captured in the program
shown in Fig. 2(e). Notice how in this output program, the names
tend to accurately capture what the program does.

Predicting type annotations Even though we illustrated the in-
ference process for variables names, the overall flow for predicting
type annotations is identical. First, we define the program elements
with unknown properties to infer type annotations for. Then, we
define elements with known properties such as API names or vari-
ables with known types. Next, we build the dependency network
(some of the relationships overlap with those for names) and fi-
nally we perform MAP inference and output a program annotated
with the predicted type annotations. One can then run a standard
type checker to check whether the predicted types are valid for that
program. In our example program shown in Fig. 2(e), the predicted
type annotations are indeed valid. In general, when automatically

trying to predict semantic properties (such as types) where sound-
ness is required, the approach presented here will have value as part
of a guess-and-check loop.

A note on name inference We note that our name inference pro-
cess is independent of what the minified names are. In particular,
the process will return the same names regardless of which minifier
was used to obfuscate the original program (provided these mini-
fiers always rename the same set of variables).

3. Structured Prediction for Programs
In this section we introduce our approach for predicting program
properties. The key idea is to formulate the problem of inferring
program properties as structured prediction with conditional ran-
dom fields (CRFs). We first introduce CRFs, then show how the
framing is done in a step-by-step manner, and finally discuss the
specifics of inference and learning in the context of programs. The
prediction framework presented in this section is fairly general and
can potentially be instantiated to many different kinds of challenges
(we instantiate it for two challenges in Section 4).

Notation: programs, labels, predictions Let x ∈ X be a pro-
gram. As with standard program analysis, we will infer properties
about program statements or expressions (referred to as program
elements). For a program x, each element (e.g. a variable) is iden-
tified with an index (a natural number). We will usually need to
separate the elements into two kinds: i) elements for which we are
interested in inferring properties and ii) elements for which we al-
ready know their properties (e.g. these properties may have been
obtained via standard program analysis or via manual annotation).
We use two helper functions n,m : X → N to return the appropri-
ate number of program elements for a given program x: n(x) re-
turns the total number of elements of the first kind andm(x) returns
the total number of elements of the second kind. For convenience,
we assume that elements of the first kind are indexed in the range
[1..n(x)] and elements of the second kind are indexed in the range



[n(x)+1, n(x)+m(x)]. To avoid clutter, when x is clear from the
context, we write n instead of n(x) and m instead of m(x).

We use the set LabelsU to denote all possible values that a prop-
erty can take. For instance, in type prediction, LabelsU contains all
possible types (e.g. number, string, etc). Then, for a program x, we
use the notation y = (y1, ..., yn(x)) to denote a vector of predicted
program properties. Here, y ∈ Y where Y = (LabelsU )∗. That is,
each entry yi in the vector y ranges over LabelsU and denotes that
program element i has a property yi.

Problem definition Let D = {〈x(j),y(j)〉}tj=1 denote the train-
ing data: a set of t programs each with corresponding program
properties. Our goal is to learn a model that captures the condi-
tional probability Pr(y | x). Once the model is learned, we can
predict properties of new programs by posing the following query
(also known as MAP or Maximum a Posteriori query):

Given a new program x, find y = argmaxy′∈Ωx
Pr(y′ | x)

That is, for a new program x, we aim to find the most likely
assignment of program properties y according to the probabilistic
distribution. Here, Ωx ⊆ Y describes the set of possible assign-
ments of properties y′ for the program elements of x. The set Ωx is
important as it allows restricting the set of possible properties and
is useful for encoding problem-specific constraints.

3.1 Conditional Random Fields (CRFs)
We now describe CRFs, a particular model for representing the
conditional probability Pr(y | x). We consider the case where
the factors are positive in which case, without loss of generality,
any conditional probability of properties y given a program x can
be encoded as follows:

Pr(y | x) =
1

Z(x)
exp(score(y, x))

where score is a function that returns a real number indicating
the score of an assignment of properties y for a program x. As-
signments with higher score are more likely than assignments with
lower score. Z(x), called the partition function, ensures that the
above expression does in fact encode a conditional distribution. It
returns a real number depending only on the program x, such that
the probabilities over all possible assignments y sum to 1, i.e.:

Z(x) =
∑
y∈Ωx

exp(score(y, x))

We consider score functions that can be expressed as a composi-
tion of a sum of k feature functions fi associated with weights wi:

score(y, x) =

k∑
i=1

wifi(y, x) = wT f(y, x)

Here, f is a vector of functions fi and w is a vector of weights
wi. The feature functions fi : Y × X → R are used to score
assignments of program properties. This representation of score
functions is particularly suited for learning (as the weights w can
be learned from data). Based on the definition above, we can now
define a conditional random field [17].

Definition 3.1 (Conditional Random Field (CRF)). A model for the
conditional probability of labels y given observations x is called
(log-linear) conditional random field, if it is represented as:

Pr(y | x) =
1

Z(x)
exp(wT f(y, x))

A note on feature functions Feature functions are key to con-
trolling the likelihood of an assignment of properties y for a pro-
gram x. For instance, a feature function can be defined in a way
which prohibits or lowers the score of undesirable predictions: say

if fi(yB , x) = −∞, the feature function fi (with weight wi > 0)
disables an assignment yB , thus resulting in Pr(yB | x) = 0.

We discuss how the feature functions are defined in the next
subsection. Note that feature functions are defined independently
of the program being queried, and are only based on the particular
prediction problem we are interested in. For example, when we pre-
dict a program’s types, we define one set of feature functions and
when we predict identifier names, we define another set. Once de-
fined, the feature functions are re-used for predicting the particular
kind of property we are interested in for any input program.

3.2 Making Predictions for Programs
We next describe a step by step process for predicting program
properties using CRFs where program elements are related with
pairwise functions. We first show how to build a network between
elements, then describe how to build the feature functions fi based
on that network and finally illustrate how to score a prediction.

Step 1: Build dependence network Gx The first step in defin-
ing fi(y, x) is to build what we refer to as a dependency network
Gx = 〈V x, Ex〉 from the input program x. This network captures
dependencies between the predictions made for the program ele-
ments of interest. Here, V x = V xU ∪ V xK denotes the set of pro-
gram elements (e.g. variables) and consists of elements for which
we would like to predict properties V xU and elements whose proper-
ties we already know V xK . The set of edges Ex ⊆ V x×V x×Rels
denotes the fact that there is a relationship between two program
elements and describes what that relationships is.

For a program x, we define the vector zx = {zx1 , ..., zxm} to
capture the set of properties that are already known, that is, each
element in V xK is assigned a property from zx. Here, zxi denotes
the property of program element n + i. Each zxi ranges over a
set of properties LabelsK which could potentially differ from the
properties LabelsU that we use for inference. For example, if the
known properties are integer constants, LabelsK will be all valid
integers. To avoid clutter where x is clear from the context, we use
z instead of zx. We use Labels = LabelsU ∪LabelsK to denote the
set of all properties.

Step 2: Define feature functions Once the network Gx for a
program x is obtained, we use it to define the shape of the feature
functions. We define the assignment vector A = (y, z) which is
a concatenation of two assignments: the unknown properties y and
the known properties z. As usual, we access the property of the j’th
element of the vector A via Aj . We define a feature function fi as
the sum of the applications of its corresponding pairwise feature
function ψi over the set of network edges obtained from step 1.
That is, the formula below allows us to compute the value of a
particular feature function for a given prediction y:

fi(y, x) =
∑

(a,b,rel)∈Ex

ψi
(
(y, z)a, (y, z)b, rel

)
Here, each ψi : Labels× Labels× Rels → R is a pairwise feature
function relating a pair of program properties as opposed to a larger
number like fi. Recall that each edge (a, b, rel) ∈ E x represents a
pair of elements a and b and the kind of relationship rel ∈ Rels be-
tween them. Then, every time we encounter an edge between two
program elements, we apply the pairwise feature function pass-
ing in the appropriate relationship rel as an argument. Conversely,
if two program elements are unrelated there is no need to invoke
the pairwise feature function for these two elements. Focusing on
pairwise feature functions allows us to define fi directly on the net-
work obtained from the program. Note again that pairwise feature
functions ψi are pre-defined once and for all independently of the
program for which we are predicting properties. We will see par-
ticular instantiations of pairwise feature functions in later sections.
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Figure 3. A general schema for building a network for a program
x and finding the best scoring assignment of program properties y.

Although in this work we use pairwise feature functions, there is
nothing specific in our approach which precludes us from using
functions with higher arity.

Step 3: Score a prediction y Based on the above definition of a
feature function, we can now define how to obtain a total score for
a prediction y. By substitution, we obtain:

score(y, x) =
∑

(a,b,rel)∈Ex

k∑
i=1

wiψi((y, z)a, (y, z)b, rel)

That is, for a program x and its dependence network Gx, by us-
ing the pairwise functions ψi and the learned weightswi associated
with each ψi, we can obtain the score of a prediction y.

Example Let us illustrate the above steps as well as some key
points on the simple example in Fig. 3. Here we have 6 program
elements for which we would like to predict program properties.
We also have 4 program elements whose properties we already
know. Each program element is a node with an index shown outside
the circles. The edges indicate relationships between the nodes and
the labels inside the nodes are the predicted program properties
or the already known properties. As explained earlier, the known
properties z are fixed before the prediction process begins. In a
structured prediction problem, the properties y1, . . . , y6 of program
elements 1 . . . 6 are predicted such that Pr(y | x) is maximal.

Key Points Let us note three important points. First, predictions
for a node (e.g. 5) disconnected from all other nodes in the network
can be made independently of the predictions made for the other
nodes. Second, nodes 2 and 4 are connected but only via nodes with
known predictions. Therefore, the properties for nodes 2 and 4 can
be assigned independently of one another. That is, the prediction
y2 of node 2 will not affect the prediction y4 of node 4 with
respect to the total score and vice versa. The reason why this
is the case is due to a property in CRFs known as conditional
independence. We say that the prediction for a pair of nodes a
and b is conditionally independent given a set of nodes C if the
predictions for the nodes in C are fixed and all paths between a
and b go through a node in C. This is why the predictions for
nodes 2 and 4 are conditionally independent of node 7. Conditional
independence is an important property of CRFs and is leveraged by
both the inference and the learning algorithms. We do not discuss
conditional independence further but refer the reader to a standard
reference [14]. Finally, a path between two nodes (not involving
known nodes) means that the predictions for these two nodes may
(and generally will) be dependent on one another. For example,
nodes 2 and 6 are transitively connected (without going through
known nodes) meaning that the prediction for node 2 can influence
the prediction for node 6 and vice versa.

3.3 MAP inference
Recall that the key query we perform is MAP inference:

Given a program x, find y = argmaxy′∈Ωx
Pr(y′ | x)

In a CRF, this amounts to the query:

y = argmax
y′∈Ωx

1

Z(x)
exp(score(y′, x))

where:
Z(x) =

∑
y′′∈Ωx

exp(score(y′′, x))

Note that Z(x) does not depend on y′ and as a result it does not
affect the final choice for the prediction y. This is an important ob-
servation, because computing Z(x) is generally very expensive as
it may need to sum over all possible assignments y′′. Therefore,
we can exclude Z(x) from the maximized formula. Next, we take
into account the fact that exp is a monotonically increasing func-
tion enabling us to remove exp from the equation. This leads to an
equivalent simplified query:

y = argmax
y′∈Ωx

score(y′, x)

This means that an algorithm answering the MAP inference
query must ultimately maximize the score function. For instance,
for the example in Fig. 3, once we fix the labels zi, we need to find
labels yi such that score is maximized.

In principle, at this stage one can use any algorithm to answer
the MAP inference query. For instance, a naïve but inefficient way
to solve this query is by trying all possible outcomes y′ ∈ Ωx and
scoring each of them to select the highest scoring one. Other exact
and inexact [14] inference algorithms exist if the network Gx and
the outcomes set Ωx have certain restrictions (e.g. Gx is a tree).

Specifics of programs Unfortunately, the problem with existing
inference algorithms is that they are too slow to be usable for our
problem domain (i.e. programs). For example, in typical applica-
tions of CRFs [14], it is unusual to have more than a handful of
possible assignments for an element (e.g. 10), while in our case
there could potentially be thousands of possible assignments per
element. Towards that, in Section 5 we present a fast and approx-
imate MAP inference algorithm that is tailored to the specifics of
dealing with programs: the shape of the feature functions, the unre-
stricted nature of Gx and the massive set of possible assignments.

3.4 Learning
We briefly discuss how we learn the weights w that describe the
scoring function score. To learn w, we use an advanced learn-
ing technique that generalizes support vector machines. Given the
training data D = {〈x(j),y(j)〉}tj=1 of t samples, our goal is to
find w such that the given assignments y(j) are the highest scoring
assignments in as many training samples as possible subject to ad-
ditional learning constraints. We discuss the learning procedure in
detail in Section 6.

4. JSNICE: Predicting Names and Type
Annotations for JavaScript

In this section we present an example of using our structured pre-
diction approach presented in Section 3 for inferring two kinds of
properties: (i) predicting names of local variables, and (ii) pre-
dicting type annotations of function arguments. We investigate the
above challenges in the context of JavaScript, a popular language
where addressing the above two questions is of significant impor-
tance. We do note however that much of the machinery discussed
in this section applies almost as-is to other languages.



Presentation Flow Recall that in Section 3, we defined a three-
step process to obtaining a total score for a prediction, where the
first step is to define the network Gx = 〈V x, Ex〉 and the second
step is to define the pairwise feature functions ψi. The combination
of these two fully defines the feature functions fi. In what follows,
we first present the probabilistic name prediction and define V x

for that problem. We then present the probabilistic type prediction
and define V x in that context. Then, we define Ex: which program
elements from V x are related as well as how they are related (that
is, Rels). Some of these relationships are similar for both prediction
problems and hence we discuss them in the same section. Finally,
we discuss how to obtain the pairwise feature functions ψi.

4.1 Probabilistic Name Prediction
The goal of our name prediction task is to predict the (most likely)
names of local variables in a given program x. The way we proceed
to solve this problem in our framework is as follows. First, as out-
lined in Section 3, we identify the set of known program elements,
referred to as V xK , as well as the set of unknown program elements
for which we will be predicting new names, referred to as V xU .

For the name prediction problem, we take V xK to be all con-
stants, objects properties, methods and global variables of the pro-
gram x. Each program element in V xK can be assigned values from
the set LabelsK = JSConsts∪JSNames, where JSNames is
a set of all valid identifier names, and JSConsts is a set of possi-
ble constants. We note that object property names and API names
are modeled as constants, as the dot (.) operator takes an object on
the left-hand size and a string constant on the right-hand size. We
define the set V xU to contain all local variables of a program x. Here,
a variable name belonging to two different scopes leads to two pro-
gram elements in V xU . Finally, LabelsU ranges over JSNames.

To ensure the newly predicted names are semantic preserving,
we ensure that the prediction satisfies the following constraints:

1. All references to a renamed local variable must be renamed to
the same name.

2. The predicted identifier names must not be reserved keywords.

3. The prediction must not suggest the same name for two differ-
ent variables in the same scope.

The first property is naturally enforced in the way we define
V xU where each element corresponds to a local variable as opposed
to having a unique element for every variable occurrence in the
program. The second property is enforced by making sure the set
LabelsU from which predicted names are drawn does not contain
keywords. Finally, we enforce the third constraint by restricting Ωx
so that predictions with conflicting names are prohibited.

4.2 Probabilistic Type Annotation Prediction
Our second application involves probabilistic type annotation in-
ference of function parameters. Focusing on function parameters is
particularly important for JavaScript, a duck-typed language lack-
ing type annotations. Without knowing the types of function pa-
rameters, a forward type inference analyzer will fail to derive pre-
cise and meaningful types (except the types of constants and those
returned by common APIs such as DOM APIs). As a result, real-
world programs using libraries cannot be analyzed precisely [11].

Instead, we propose to probabilistically predict the type anno-
tations of function parameters. Here, our training data consists of
a set of JavaScript programs that have already been annotated with
types for function parameters. In JavaScript, these annotations are
provided in a specially formatted comments known as JSDoc4.

4 https://developers.google.com/closure/compiler/docs/js-for-compiler

> - Any type

string number boolean Function Array ...
Other objects:
e.g. RegExp,
Element,

Event, etc.

⊥ - No type

Figure 4. The lattice of types over which prediction occurs.

The simplified language over which we predict type annotations
is defined as follows:

expr ::= val | var | expr1(expr2) | expr1 ~ expr2 Expression

val ::= λvar : τ.expr | n Value

Here, n ranges over constants (n ∈ JSConsts), var is a meta-
variable ranging over the program variables, ~ ranges over the
standard binary operators (+, -, *, /, ., <, ==, ===, etc.), and τ
ranges over all possible variable types. That is, τ = {?}∪L where
L is a set of types (we discuss how to instantiate L below) and ?
denotes the unknown type. To be explicit, we use the set JSTypes
where JSTypes = τ . We use the function:

[]x : expr → JSTypes

to obtain the type of a given expression in a given program x. This
map can be manually provided or built using program analysis.
When the program x is clear from the context we use [e] as a
shortcut for []x(e).

Defining known and unknown program elements As usual, our
first step is to define the two sets of known and unknown elements.
We define the set of unknown program elements as follows:

V xU = {e | e is var, [e] = ?}
LabelsU = JSTypes

That is, V xU contains variables whose type is unknown. We
differentiate between the type > and the unknown type ? in order
to allow for finer control over which types we would like to predict.
For instance, a type may be > if a classic type inference algorithm
fails to infer more precise types (usually, standard inference only
discovers types of constants and values returned by common APIs,
but fails to infer types of function parameters). A type may be
denoted as unknown (i.e. ?) if the type inference did not even
attempt to infer types for the particular expression (e.g. function
parameters). Of course, in the above definition of V xU we could also
include > and use our approach to potentially refine the results of
classic type inference.

Next, we define the set of known elements V xK . Note that V xK
can contain any expression, not just variables like V xU above:

V xK = {e | e is expr, [e] 6= ?} ∪ {n | n is constant}
LabelsK = JSTypes ∪ JSConsts
That is, V xK contains both, expressions whose types are known

as well as constants. Currently, we do not apply any global re-
striction on the set of possible assignments Ωx, that is, Ωx =
(JSTypes)n (recall that n is a function which returns the number
of elements whose property is to be predicted). This means that we
rely entirely on the learning to discover the rules that will produce
non-contradicting types. The only restriction (discussed below) that
we apply is constraining JSTypes when performing predictions.

Defining JSTypes. So far, we have not discussed the exact
contents of the set JSTypes except to state that JSTypes =
{?} ∪ L where L is a set of types. The set L can be instantiated
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Figure 5. (a) the AST of expression i+j<k, and two dependency
networks built from the AST relations: (b) for name predictions,
and (c) for type predictions.

in various ways. In this work, we chose to define L as L = P(T )
where 〈T,v〉 is a complete lattice of types with T andv as defined
in Fig. 4. In the figure we use "..." to denote a potentially infinite
number of user-defined object types.

Key points We note several important points here. First, the set
JSTypes is built during training from a finite set of possible types
that are already manually provided or are inferred by the classic
type inference. Therefore, for a given training data, JSTypes is
necessarily a finite set. Second, because JSTypes may contain a
subset of types O ⊆ JSTypes specific to a particular program in
the training data, it may be the case that when we are considering
a new program whose types are to be predicted, the types found in
O are simply not relevant to that new program (for instance, the
types in O refer to names that do not appear in the new program).
Therefore, when we perform prediction, we filter irrelevant types
from the set JSTypes. This is the only restriction we consider
when performing type predictions. Finally, because L is defined
as a powerset lattice, it encodes (in this case, a finite number of)
disjunctions. That is, a variable whose type is to be predicted ranges
over exponentially many subsets allowing many choices for the
type. For example, a variable can have a type {string, number}
which for convenience can also be written as string ∨ number.

4.3 Relating program elements
We next describe the relationships that we introduce between pro-
gram elements. These relationships define how to build the set of
edges Ex of a program x. Since the program elements for both
prediction tasks are similar (e.g. they both contain JavaScript con-
stants, variables and expressions), we discuss the relationships we
use for each task together. If a relationship is specific to a particular
task, we explicitly state so when describing it.

4.3.1 Relating Expressions
The first relationship we discuss is syntactic in nature: it relates
two program elements based on the their syntactic relationship in
the program’s Abstract Syntax Tree (AST). Let us consider how we
obtain the relationships for the expression i+j<k. First, we build
the AST of the expression shown in Fig. 5 (a). Suppose we are in-
terested in performing name prediction for variables i, j and k (de-
noted by program properties with indices 1, 2 and 3 respectively),
that is, V xU = {1, 2, 3}. Then, we build the dependency network
as shown in Fig. 5 (b) to indicate that the prediction for the three
elements are dependent on one another (with the particular rela-
tionship shown over the edge). For example, the edge between 1
and 2 represents the relationships that these nodes participate in an
expression L+R where L is a node for 1 and R is a node for 2.

The relationships are defined using the following grammar:

relast ::= relL(relR) | relL ~ relR

relL ::= L | relL(_) | _(relL) | relL ~ _ | _~ relL

relR ::= R | relR(_) | _(relR) | relR ~ _ | _~ relR

All relationships relast are part of Rels , that is, relast ∈
Rels . Here, as discussed earlier, ~ ranges over binary operators.
All relationships derived using the above grammar have exactly
one occurrence of L and R. For a relationship r ∈ relast, let
r[x/L, y/R, e/_] denote the expression where x is substituted for
L, y is substituted for R and the expression e is substituted for _.
Then, given two program elements a and b and a relationship r ∈
relast, a match is said to exist if r[a/L, b/R, [expr]/_]∩Exp(x) 6=
∅ (here, [expr] denotes all possible expressions in the programming
language and Exp(x) is all expressions of program x). An edge
(a, b, r) ∈ Ex between two program elements a and b exists if
there exists a match between a, b and r.

Note that for a given pair of elements a and b there could be
more than one relationship which matches, that is, both r1, r2 ∈
relast match where r1 6= r2 (therefore, there could be multiple
edges between a and b with different relationships).

The relationships described above are useful for both name and
type inference. In the case of predicting names, the expressions
being related are always variables, while for type annotations, the
expressions need not be restricted to variables. For example, in
Fig. 5(c) there is a relationship between the types of k and i+j
via L<R. Note that our rules do not directly capture relationships
between [i] and [i+j], but they are transitively dependent. Still,
many useful and interesting direct relationships for type inference
are present. For instance, in classic type inference, the relationship
L=R implies a constraint rule [L] w [R] where w is the super-type
relationship (indicated in Fig. 4). Interestingly, our inference model
can learn such rules instead of providing them explicitly.

4.3.2 Aliasing Relations
Another kind of (semantic) relationship we introduce is that of
aliasing. Let alias(e) denote the set of expressions that may alias
with the expression e (this information can be determined via
standard alias analysis [25]).

Argument-to-parameter We introduce the ARG_TO_PM rela-
tionship which relates arguments of a function invocation (the
arguments can be arbitrary expressions) with parameters in the
function declaration (variables whose names or types are to be in-
ferred). Let e1(e2) be an invocation of the function captured by the
expression e1. Then, for all possible declarations of e1 (those are
an over-approximation), we relate the argument of the call e2 to
the parameter in the declaration. That is, for any v ∈ {p | (λp :
τ.e) ∈ alias(e1)}, we add the edge (e2, v,ARG_TO_PM) to Ex.
In the case of predicting names e2 is always a variable, while with
predicting types e2 is not restricted to variables.

Transitive Aliasing Second, we introduce a transitive aliasing re-
lationship referred to as (r,ALIAS) between variables which may
alias. This is a relationship that we introduce only when predicting
types. Let a and b be related via the relationship r where r ranges
over the grammar defined earlier. Then, for all c ∈ alias(b) where
c is a variable, we include the edge (a, c, (r,ALIAS)).

4.3.3 Function name relationships
We also introduce two relationships referred to as MAY_CALL
and MAY_ACCESS. These relationships are only used when pre-
dicting names and are particularly useful for predicting function
names. The reason is that in JavaScript many of the local vari-
ables are function declarations. The MAY_CALL relationship re-
lates a function name f with names of other functions g that f may



call (this semantic information can be obtained via program analy-
sis). That is, if a function f may call function g, we add the edge
(f, g,MAY_CALL) to the set of edges Ex. Similarly, if in a func-
tion f , there is an access to an object field named fld, we add the
edge (f, fld,MAY_ACCESS) to the set Ex. Naturally, f and g are
allowed to only range over variables (as when predicting names the
nodes represent variables and not arbitrary expressions), and the
name of an object field fld is a string constant.

4.4 Pairwise feature functions
Finally, we describe how to obtain and define the pairwise feature
functions {ψi}ki=1. We obtain these functions as a pre-processing
step before the training phase begins. Recall that our training set
D = {〈x(j),y(j)〉}tj=1 consists of t programs where for each
program x we are given the corresponding properties y. For each
tuple (x,y) ∈ D, we define the set of features as follows:

features(x,y) = {
(
(y, z)a, (y, z)b, rel

)
| (a, b, rel) ∈ E x}

Then, for the entire training set we obtain all features as follows:

all_features(D) =

t⋃
j=1

features(x(j),y(j))

We then define the pairwise feature functions to be indicator
functions of each feature triple 〈l1i , l2i , rel i〉 ∈ all_features(D):

ψi(l
1, l2, rel) =

{
1 if l1 = l1i and l2 = l2i and rel = rel i
0 otherwise

In addition to indicator functions, we have features for equality
of program properties ψ=(l1, l2, rel) that return 1 if and only if the
two related labels are equal. Our feature functions are fully inferred
from the available training data and the network Gx of each pro-
gram x. After the feature functions are defined, in the training phase
(discussed later), we learn their corresponding weights {wi}ki=1 (k
is the number of pairwise functions). Note that the weights and the
feature functions can vary depending on the training data D, but
both are independent of the program for which we are trying to
predict properties.

5. Prediction Algorithm
In this section we present our inference algorithm for making pre-
dictions (also referred to as MAP inference). Recall that predicting
properties y of a program x involves finding a y such that:

y=argmax
y′∈Ωx

Pr(y′|x)=argmax
y′∈Ωx

score(y′, x)=argmax
y′∈Ωx

wT f(y′, x)

When designing our inference algorithm, a key objective was
optimizing the speed of prediction. There are two reasons why
speed is critical. First, we expect prediction to be done interac-
tively, as part of a program development environment or as a ser-
vice (e.g., via a public web site such as JSNICE). This requirement
renders any inference algorithm that takes more than a few sec-
onds unacceptable. Second (as we will see later), the prediction
algorithm is part of the inner-most loop of training, and hence its
performance directly impacts an already costly and work-intensive
training phase.

Exact algorithms Exact inference in CRFs is generally NP-hard
and computationally prohibitive in practice. This problem is well
known and hard specifically for denser networks with no predefined
shape like the ones we obtain from programs [14].

Approximate algorithms Previous studies [8, 12] for MAP in-
ference in networks of arbitrary shapes discuss loopy-belief prop-
agation, greedy algorithms, combination approaches or graph-cut

based algorithms. In their results, they show that advanced approx-
imate algorithms may result in higher precision for the inference
and the learning, however they also come at the cost of significantly
more computation. Their experiments confirm that more advanced
techniques such as belief propagation are consistently at least an
order of magnitude slower than greedy algorithms.

As our focus is on performance, we proceeded with a greedy
approach (also known as iterated conditional modes [4]). Our al-
gorithm is tailored to the nature of our prediction task (especially
when predicting names where we have a massive number of pos-
sible assignments for each element) in order to significantly im-
prove the computational complexity over a naïve greedy approach.
In particular, our algorithm leverages the shape of the feature func-
tions discussed in Section 4.4. In essence, the approach works by
selecting candidate assignments from a beam of s-best possible la-
bels leading to significant gains in performance at the expense of
slightly higher chance of obtaining non-optimal assignments.

Algorithm 1: Greedy Inference Algorithm
Input: network Gx = 〈V x, Ex〉 of program x,

initial assignment of n unknown properties y0 ∈ Ωx,
known properties z
pairwise feature functions ψi and their learned weights wi

Output: y ≈ argmaxy′∈Ωx

(
score(y′, x)

)
1 begin
2 y← y0

3 for pass ∈ [1..num_passes] do
4 // for each node with unknown property in the graph Gx

5 for v ∈ [1..n] do
6 Ev ← {(v, _, _) ∈ Ex} ∪ {(_, v, _) ∈ Ex}
7 scorev ← scoreEdges

(
Ev , (y, z)

)
8 for l′ ∈ candidates

(
v, (y, z), Ev

)
do

9 l← yv // get current label of v
10 yv ← l′ // change label of v in y

11 score′v ← scoreEdges
(
Ev , (y, z)

)
12 if y ∈ Ωx ∧ score′v > scorev then
13 scorev ← score′v
14 else
15 yv ← l // no score improvement: revert label.

16 return y

5.1 Greedy inference algorithm
Algorithm 1 illustrates our greedy inference procedure. The infer-
ence algorithm has four inputs: i) a network Gx obtained from a
program x, ii) an initial assignment of properties for the unknown
elements y0, iii) the obtained known properties z, and iv) the pair-
wise feature functions and their weights. The way these inputs are
obtained was already described earlier in Section 3. The output of
the algorithm is an approximate prediction y which also conforms
to the desired constraints Ωx. The algorithm also uses an auxiliary
function called scoreEdges defined as follows:

scoreEdges(E,A) =
∑

(a,b,rel)∈E

k∑
i=1

wiψi(Aa, Ab, rel)

The scoreEdges(E,A) function is the same as score defined
earlier except that scoreEdges works on a subset of the network
edges E ⊆ Ex. Given a set of edges E and an assignment of
elements to properties A, scoreEdges iterates over E, applies the
appropriate feature function to each edge and sums up the results.

The basic idea of the algorithm is to start with an initial assign-
ment y0 (Line 2) and to make a number of passes over all nodes in



the network, attempting to improve the score of the current predic-
tion y. The algorithm works on a node by node basis: it selects a
node v ∈ [1..n] and then finds a label for that node which improves
the score of the assignment. That is, once the node v is selected, the
algorithm first obtains the set of edges Ev in which v participates
(shown on Line 6) and computes via scoreEdges the contribution
of the edges to the total score. Then, the inner loop starting at Line 8
tries new labels for the element v from a set of candidate labels and
accepts only labels that lead to a score improvement.

Time Complexity The time complexity for one iteration of the
prediction algorithm depends on the number of nodes, the number
of adjacent edges for each node and the number of candidate labels.
Since the total number of edges in the graph |Ex| is a product of
the number of nodes and the number of edges per node, then one
iteration of the algorithm has O(d|Ex|) time complexity, where d
is the total number of possible candidate assignment labels for a
node (obtained on Line 8).

5.2 Obtaining Candidates
Our algorithm does not try all possible labels for a node. Instead,
we define the function candidates(v,A,E) which suggests can-
didate labels given a node v, assignment A, and a set of edges E.
Recall that all_features(D) is a (large) set of triples (l1, l2, r)
obtained from the training data D relating labels l1 and l2 via
r. Further, our pairwise feature functions {ψi}ki=1 (where k =
|all_features(D)|) defined earlier are indicator functions mean-
ing there is a one to one correspondence between a triple (l1, l2, r)
and a pairwise function. Recall that in the training phase (discussed
later), we learn a weight wi associated with each function ψi (and
because of the one-to-one mapping, with each triple (l1, l2, r)). We
use these weights in order to restrict the set of possible assignments
we consider for a node v. Let tops be a function which given a set
of features (triples) returns the top s triples based on the respective
weights. Let for convenience F = all_features(D). Then, we
define the following auxiliary functions:

topLs(lbl, rel) = tops({t | tl = lbl ∧ trel = rel ∧ t ∈ F})
topRs(lbl, rel) = tops({t | tr = lbl ∧ trel = rel ∧ t ∈ F})

The above functions can be easily pre-computed for a fixed beam
size s and all triples in the training data F . Finally, we define:

candidates(v,A,E) =

=
⋃

〈a,v,rel〉∈E

{l2 | 〈l1, l2, r〉 ∈ topLs(Aa, rel)}∪

⋃
〈v,b,rel〉∈E

{l1 | 〈l1, l2, r〉 ∈ topRs(Ab, rel)}

The meaning of the above function is that for every edge ad-
jacent to v, we consider at most s of the highest scoring triples
(according to the learned weights). This results in a set of possi-
ble assignments for v used to drive the inference algorithm. The
beam parameter s controls a trade-off between precision and run-
ning time. Lower values of s decrease the chance of predicting a
good candidate label, while higher s make the algorithm consider
more labels and run longer. Our experiments show that good can-
didate labels can be obtained with fairly low values of s. Thanks
to this observation, the prediction runs orders of magnitude faster
than a naïve greedy algorithms that tries all possible labels.

Monotonicity At each pass of our algorithm, we iterate over the
nodes of Gx and update the label of each node only if this leads
to a score improvement (at Line 12). Since we always increase the
score of the assignment y, after a certain number of iterations, we
reach a fixed point assignment y that can no longer be improved
by the algorithm. The local optimum however, is not guaranteed to

be a global optimum. Since we cannot give a complete optimality
guarantee, to achieve further speed ups, we also cap the number of
algorithm passes at a constant num_passes.

Additional Improvements To further decrease the computation
time and possibly increase the precision of our algorithm, we made
two improvements. First, if a node has more than a certain number
of adjacent nodes, we decrease the size of the beam s. In our
implementation we decrease the beam size by a factor of 16 if a
node has more than 32 adjacent nodes. At almost no computation
cost, we also perform optimizations on pairs of nodes in addition
to individual nodes. In this case, for each edge in Gx, we use the
s best scoring features on the same type of edge in the training set
and attempt to set the labels of the two elements connected by the
edge to the values in each triple.

6. Learning
In this section we discuss the learning procedure we use for obtain-
ing the weights w of the model Pr(y | x) from a data set. We as-
sume that there is some underlying joint distribution P (y, x) from
which the data set D = {〈x(j),y(j)〉}tj=1 of t programs is drawn
independently and identically distributed. In addition to programs
x(j), we assume a given assignment of labels y(j) (names or type
annotations in our case) is provided as well. We perform discrimi-
native training (i.e., estimate Pr(y | x) directly) rather than gener-
ative training (i.e., estimate Pr(y, x), and deriving Pr(y | x) from
this joint model), since latter requires estimating a distribution over
programs x – a challenging, and for our purposes unnecessary task.

The goal of learning is to then estimate the parameters w to
achieve generalization: we wish that for a new program x drawn
from the same distribution P – but generally not contained in
the data set D – its properties y are predicted accurately (using
the prediction algorithm from Section 5). Several approaches to
accomplish this task exist and can potentially be used.

One approach is to fit parameters in order to maximize the (con-
ditional) likelihood of the data, that is, try to choose weights such
that the estimated model Pr(y | x) accurately fits the true con-
ditional distribution P (y | x) associated with the data-generating
distribution P . Unfortunately, this task requires computation of the
partition function Z(x) which is a formidable task [14].

Instead, we perform what is known as max-margin training: we
learn weights w such that the training data is classified correctly
subject to additional constraints like margin and regularization.
For this task, powerful learning algorithms are available [26, 27].
In particular, we use a variant of the Structured Support Vector
Machine (SSVM)5 [27] and we train it efficiently with the scalable
subgradient descent algorithm proposed in [23].

Structured Support Vector Machine The goal of SSVM learning
is to find w such that for each training sample 〈x(j),y(j)〉 (j ∈
[1, t]), the assignment found by the classifier (i.e., maximizing the
score) is equal to the given assignment y(j), and there is a margin
between the correct classification and any other classification:

∀j, ∀y′ ∈ Ωx(j) score(y
(j), x(j)) ≥ score(y′, x(j)) + ∆(y(j),y′)

Here, ∆: Labels∗ × Labels∗ → R is a distance function (non-
negative and satisfying triangle inequality). One can interpret
∆(y(j),y′) as a (safety) margin between the given assignment
y(j) and any other assignment y′, w.r.t. the score function. ∆ is
chosen such that slight mistakes (e.g., incorrect prediction of few
properties) require less margin than major mistakes. For our appli-

5 Structured Support Vector Machines generalize classical Support Vector
Machines to predict many interdependent labels at once, as necessary when
analyzing programs.



cations, we took ∆ to return the number of different labels between
the reference assignment y(j) and any other assignment y′.

Generally, it may not be possible to find weights achieving the
above constraints. Hence, SSVMs attempt to find weights w that
minimize the violation of the margin (i.e., maximize the goodness
of fit to the data). At the same time, SSVMs control model com-
plexity via regularization, penalizing the use of large weights. This
is done to facilitate better generalization to unseen test programs.

6.1 Learning with stochastic gradient descent
Achieving the balance of data-fit and model complexity leads to a
natural optimization problem:

w∗ = argmin
w

t∑
j=1

`(w;x(j),y(j)) s.t. w ∈ Wλ (1)

where

`(w;x(j),y(j))= max
y′∈Ω

x(j)

wT [f(y′, x(j))−f(y(j), x(j))]+∆(y(j),y′)

is called the structured hinge loss. This nonnegative loss function
measures the violation of the margin constraints caused for the j-
th program, when using a particular set of weights w. Thus, if the
objective (1) reaches zero, all margin constraints are respected, i.e.,
accurate labels are returned for all training programs. Furthermore,
the set Wλ encodes some constraints on the weights in order to
control model complexity and avoid overfitting. In our work, we
regularize by requiring all weights to be nonnegative and bounded
by 1/λ, hence we set

Wλ = {w : wi ∈ [0, 1/λ] for all i}.
The SSVM optimization problem (1) is convex (since the structured
hinge loss is a pointwise maximum of linear functions, andWλ is
convex), suggesting the use of gradient descent optimization. In
particular, we use a technique called projected stochastic gradient
descent, which is known to converge to an optimal solution, while
being extremely scalable for structured prediction problems [23].

The algorithm proceeds iteratively; in each iteration, it picks
a random program with index j ∈ [1..t] from D, computes the
gradient (w.r.t. w) of the loss function `(w;x(j),y(j)) and takes
a step in the negative gradient direction. If it ends up outside the
feasible regionWλ, it projects w to the closest feasible point.

In order to compute the gradient g = ∇w`(w;x(j),y(j)) at w
w.r.t. the j-th program, we must solve the problem

ybest ← argmax
y′∈Ω

x(j)

(
score(y′, x(j)) + ∆(y(j),y′)

)
, (2)

resulting in the gradient g

g← f(ybest, x
(j))− f(y(j), x(j))

Hence, computing the gradient requires solving the loss-augmented
inference problem (2). This problem can be (approximately) solved
using the algorithm presented in Section 5.

After finishing the gradient computation, the weights w (used
by score) are updated as follows:

w← ProjWλ(w − αg)

where α is a learning rate constant and ProjWλ is a projection
operation determined by the regularization described below.

6.2 Regularization
The function ProjWλ : Rk → Rk projects its arguments to the
point inWλ that is closest in terms of Euclidean distance. This op-
eration is used to place restrictions on the weights w ∈ Rk such
as non-negativity and boundedness. The goal of this procedure,

known as regularization, is to avoid a problem known as overfit-
ting – a case where w is good in predicting training data, but fails
to generalize to unseen data. In our case, we perform `inf regular-
ization, which can be efficiently done in closed form as follows:

ProjWλ(w) = w′ such that w′i = max(0,min(1/λ,wi))

This projection ensures that the learned weights are non-negative
and never exceed a value 1/λ, limiting the ability to learn too strong
feature functions that may not generalize to unseen data. Our choice
of `inf has the additional benefit that it operates on vector compo-
nents independently. This allows for efficient implementation of the
learning where we regularize only vector components that changed
or components for which the gradient g is non-zero. This enables
us to use a sparse representation of the vectors g, avoiding iteration
over all components of the vector w when projecting.

6.3 Complete training phase
In summary, our training procedure first iterates once over the
training data and extracts features. We initialize each weight with
wi = 1/(2λ). Then, we start with a learning rate of α = 0.1
and iterate in multiple passes to learn their weights with stochas-
tic gradient descent. In each pass, we compute gradients via infer-
ence, and apply regularization as described before. Additionally,
we count the number of wrong labels in the pass and compare it
to the number of wrong labels in the previous pass. If we do not
observe improvement, we decrease the learning rate α by one half.
In our implementation, we iterate over the data up to 24 times.

To speed up the training phase, we also parallelized the stochas-
tic gradient descent on multiple threads as described in [29]. At
each pass, we randomly split the data to threads where each thread
ti updates its own version of the weights wti . At the end of each
pass, the weights wti are averaged to obtain the final weights w.

7. Implementation and Evaluation
We implemented our approach in an end-to-end production quality
interactive tool, called JSNICE, which targets name and type an-
notation prediction for JavaScript. JSNICE is integrated within the
Google Closure Compiler [6], a tool which takes human-readable
JavaScript with optional type annotations and typechecks it. It then
returns an optimized, minified and human-unreadable JavaScript
with stripped annotations.

To implement our system, we added a new mode to the compiler
that aims to reverse its operation: given an optimized minified
JavaScript code, JSNICE generates JavaScript code that is well
annotated (with types) and as human-readable as possible (with
useful identifier names). Our two applications for names and types
were implemented as two models that can be run separately.

JSNICE: Impact on Developers A week after JSNICE was made
publicly available, it was used by more than 30, 000 developers,
with the vast majority of feedback left in blogs and tweets being
very positive (those can be found by a simple web search). We
believe the combination of high speed and high precision achieved
by the structured prediction approach were the main reasons for
this positive reception.

Experimental Evaluation We next present a detailed experimen-
tal evaluation of our statistical approach and demonstrate that the
approach can be successfully applied to the two prediction tasks
we described. Further, we evaluate how various knobs of our sys-
tem affect the overall performance and precision of the predictions.

We collected two disjoint sets of JavaScript programs to form
our training and evaluation data. For training, we downloaded
10, 517 JavaScript projects from GitHub. For evaluation, we took
the 50 JavaScript projects with the highest number of commits



System Names Types Types
Accuracy Precision Recall

all training data 63.4% 81.6% 66.9%

10% of training data 54.5% 81.4% 64.8%

1% of training data 41.2% 77.9% 62.8%

all data, no structure 54.1% 84.0% 56.0%

baseline - no predictions 25.3% 37.8% 100%

Table 1. Precision and recall for name and type reconstruction of
minified JavaScript programs evaluated on our test set.

from BitBucket6. By taking projects from different repositories, we
decrease the likelihood of overlap between training and evaluation
data. We also searched in GitHub to check that the projects in the
evaluation data are not included in the training data. Finally, we
implemented a simple checker to detect and filter out minified and
obfuscated files from the training and the evaluation data. After
filtering minified files, we ended up with training data consisting of
324, 501 files and evaluation data of 2, 710 files. Next, we discuss
how we trained and evaluated our system: first, we discuss param-
eter selection (Section 7.1), then precision (Section 7.2) and model
sizes (Section 7.3), and finally the running times (Section 7.4).

7.1 Parameter selection
We used 10-fold cross-validation to select the best learning param-
eters of the system only based on the training data and not biased
by any test set [20]. Cross-validation works by splitting the train-
ing data into 10 equal pieces called folds and evaluating the error
rate on each fold by training a model on the data in the other 9
folds. Then, we trained and evaluated on a set of different training
parameters and selected the parameters with the lowest error rate.

We tuned the values of two parameters that affect the learning:
regularization constant λ, and presence of margin. Higher values of
λ mean that we regularize more, i.e. add more restrictions on the
feature weights by limiting their maximal value to a lower value
1/λ. The margin parameter determines if the margin function ∆
(see Section 6) should return zero or the number of different labels
between the two assignments. To reduce computation (since we
must train and test a large number of parameters), we performed
cross-validation on only 1% sample of the training data. The cross-
validation procedure determined that the best value for λ is 2.0 for
names, 5.0 for types, and margin ∆ should be applied to both tasks.

7.2 Precision
After choosing the parameters, we evaluated the precision of our
system for predicting names and type annotations. Our experiments
were performed by predicting the names and types in isolation on
each of the 2, 710 testing files. To evaluate precision, we first mini-
fied all 2, 710 files with UglifyJS 7. The process renames local vari-
able identifiers to meaningless short names and removes whites-
paces and type annotations. Each minified program is semantically
equivalent (except when using with or eval) to the original pro-
gram. Then, we used JSNICE to reconstruct name and type infor-
mation. We compared the precision of the following configurations:

• The most powerful system works with all of the training data
and performs structured prediction as described so far.

6 http://bitbucket.org
7 https://github.com/mishoo/UglifyJS

• Two systems using a fraction of the training data – one on 10%
and one on 1% of the files.
• To evaluate the effect of structure when making predictions,

we disabled relationships between unknown properties and per-
formed predictions on that network (the learning phase still uses
structure).
• A naïve baseline which does no prediction: it keeps names the

same and sets all types to the most common type string.

7.2.1 Name predictions
To evaluate the accuracy of name predictions, we took each of
the minified programs and used the name inference in JSNICE to
rename its local variables. Then, we compared the new names
to the original names (before obfuscation) for each of the tested
programs. The results for the name reconstruction are summarized
in the second column of Table 1. Overall, our best system produces
code with 63.4% of identifier names exactly equal to their original
names. The systems trained on less data have significantly lower
precision showing the importance of the amount of training data.

Not using structured prediction also drops the accuracy signif-
icantly and has about the same effect as an order of magnitude
less data. Finally, not changing any identifier names produces ac-
curacy of 25.3% – this is because minifying the code may not re-
name some variables (e.g. global variables) in order to guarantee
semantic preserving transformations and occasionally one-letter lo-
cal variable names stay the same (e.g. induction variable of a loop).

7.2.2 Type annotation predictions
Out of the 2, 710 test programs, 396 have type annotations for func-
tions in a JSDoc. For these 396, we took the minified version with
no type annotations and tried to rediscover all types in the function
signatures. We first ran the closure compiler type inference, which
produces no types for the function parameters. Then, we ran and
evaluated JSNICE on inferring these function parameter types.

JSNICE does not always produce a type for each function pa-
rameter. For example, if a function has an empty body, or a pa-
rameter is not used, we often cannot relate the parameter to any
known program properties and as a result, we make no prediction
and return the unknown type (?). To take this effect into account,
we present two metrics for types: recall and precision. Recall is
the percentage of function parameters in the evaluation for which
JSNICE made a prediction other than ?. Precision refers to the
percentage of cases – among the ones for which JSNICE made a
prediction – where it was exactly equal to the manually provided
JSDoc annotation of the test programs. We note that the manual
annotations are not always correct, and as a result 100% precision
is not necessarily a desired outcome.

We present our evaluation results for types in the last two
columns of Table 1. Since we evaluate on production JavaScript
applications that typically have short methods with complex rela-
tionships, the recall for predicting program types is only 66.9% for
our best system. However, we note that none of the types we infer
can be inferred by regular forward type analysis.

Since the total number of commonly used types is not as high as
the number of names, the amount of training data has less impact on
the system precision and recall. To increase the precision and recall
of type prediction, adding more (semantic) relationships between
program elements will be of higher importance than adding more
training data. Dropping structure increases the precision of the
predicted types slightly, but at the cost of a significantly reduced
recall. The reason is that some types are related to known properties
only transitively via other predicted types – relationships that non-
structured approaches cannot capture. On the other end of the
spectrum is a prediction system that suggests the most likely type



Input programs

107 typecheck

289 with type error

JSNICE

86 programs

141 programs
fixed

148 programs

21 programs

Output programs

227 typecheck

169 with type error

Figure 6. Evaluation results for the number of typechecking pro-
grams with manually provided types and with predicted types.

in JavaScript programs – string. Such a system produces a type
for every variable (100% recall), but its precision is only 37.8%.

Usefulness of type annotations To see if the predicted type an-
notations are useful, we compared them to the original types pro-
vided in the evaluated programs. First, we note that our evaluation
data has 3, 505 type annotations for function parameters in 396 pro-
grams. After removing these annotations and reconstructing them
with JSNICE, the number of annotations that are not ? increased to
4, 114 for the same programs. The reason JSNICE produces more
types than originally present despite having only 66.3% recall is
that not all functions in the original programs had manually pro-
vided type annotations.

Despite annotating more functions than in the original code,
the output of JSNICE has fewer type errors. We summarize these
findings in Fig. 6. For each of the 396 programs, we ran the
typechecking pass of Google’s Closure Compiler to discover type
errors. Among others, this pass checks for incompatible types,
calling into a non-function, conflicting and missing types, and
non-existent properties on objects. For our evaluation, we kept all
checks except the inexistent property check, which fails on almost
all (even valid) programs, because it depends on annotating all
properties of types – annotations that almost no program possesses.

When we ran typechecking on the input programs, we found the
majority (289) to have typechecking errors. While surprising, this
can be explained by the fact that JavaScript developers typically do
not typecheck their annotations. Among others, we found the orig-
inal code to have misspelled type names. Most typecheck errors
occur due to missing or conflicting types. In a number of cases,
the types provided were interesting for documentation, but were
semantically wrong - e.g. a parameter is a string that denotes
function name, but the manual annotation designates its type to be
Function. In contrast, the types reconstructed by JSNICE make
the majority (227) of the programs typecheck. In 141 of the pro-
grams that originally did not typecheck, JSNICE was able to infer
correct types. On the other hand, JSNICE introduced type errors in
21 programs. We investigated some of these errors and found that
not all of them were due to wrong types – in several cases the types
were rejected due to imprecision of the type system.

7.3 Model sizes
Our models contain 7, 627, 484 features for names and 70, 052
features for types. Each feature is stored as a triple, along with its
weight. As a result we need only 20 bytes per feature, resulting
in a 145.5MB model for names and 1.3MB model for types. The
dictionary which stores all names and types requires 16.8MB. As
we do not data compress our model, the memory requirements for
query processing are about as much as the model size.

7.4 Running times
We performed our performance evaluation on a 32-core machine
with four 2.13GHz Xeon processors and running Ubuntu 12.04
with 64-Bit OpenJDK Java 1.7.0_51. The training phase for name

Beam parameter Name prediction Type prediction
b Accuracy Time Precision Time

4 57.9% 43ms 80.6% 36ms
8 59.2% 60ms 80.9% 39ms
16 62.8% 62ms 81.6% 33ms
32 63.2% 80ms 81.3% 37ms
64 (JSNICE) 63.4% 114ms 81.6% 40ms
128 63.5% 175ms 82.0% 42ms
256 63.5% 275ms 81.6% 50ms

Naïve greedy, no beam 62.8% 115.2 s 81.7% 410ms

Table 2. Trade-off between precision and runtime for the name and
type predictions depending on beam search parameter s.

prediction took around 10 hours: 57 minutes to compile the input
code and generate networks for the input programs and 23 minutes
per SSVM (sub-) gradient descent optimization pass. Similarly for
types, the compilation and network construction phase took 57
minutes and then we needed 2 minutes and 16 seconds per SSVM
(sub-)gradient descent optimization pass. For all our training, we
ran 24 gradient descent passes on the training data. All the training
passes used 32 threads to utilize the cores of our machine.

Running times of prediction We evaluated the effect of changing
the beam size s of our MAP inference algorithm (from Section 5),
and the effect s has on the prediction time. The average predic-
tion times per program are summarized in Table 2. Each query is
performed on a single core of our test machine. As expected, in-
creasing s improves prediction accuracy but requires more time.
Removing the beam altogether and running naïve greedy iterated
conditional modes [4] leads to running times of around two min-
utes per program for name prediction, unacceptable for an inter-
active tool such as JSNICE. Also, its precision trails some of the
beam-based systems, because it does not perform optimization per
pair of nodes, but only a node at a time. Due to the requirements for
high performance, in our main evaluation and for our live server,
we chose the value s = 64. This value provides a good balance
between performance and precision suitable for our live system.

Evaluation data metrics Our evaluation data consists of 381, 243
lines of JavaScript code with the largest file being 3, 055 lines. For
each of the evaluated files, the constructed CRF for name prediction
has on average 383.5 arcs and 29.2 random variables. For the type
prediction evaluation tasks, each CRF has on average 109.5 arcs
and 12.6 random variables.

8. Design Decisions
The problem of effectively learning from existing code and pre-
cisely answering interesting questions on new programs is non-
trivial and requires careful interfacing between programs and so-
phisticated probabilistic models. As the overall machine can be
fairly complex, here we state the important design choices that we
made in order to arrive at the solution presented in the paper.

From programs to random variables When predicting program
properties, one needs to account for both, the program elements
whose properties are to be predicted and the set of available prop-
erties from which we draw predictions. In JSNICE, the elements
are local variables (for name prediction) and function parameters
(for type prediction). In general however, one could instantiate our
approach with any program element that ranges over program prop-
erties for which sufficient amount of training data is available.

We note that for our instantiation, JSNICE, a predicted program
property always exists in the training data. In the case of names,



large amounts of training data still allow us to predict meaningful
and useful names. Because of the assumption that the property
exists in the training data, we create one random variable per local
variable of a program with the name to predict and the feature
functions as described in Section 4.4. However, the framework
from Section 3 can be instantiated (with different feature functions)
to cases where a predicted variable name does not exist in the
training data (e.g. is a concatenation of several existing words).

The need for structure When predicting facts and properties of
programs, it is important to observe that these properties are usually
dependent on one another. This means that any predictions of
these properties should be done jointly and not independently in
isolation.

Graphical models: Undirected over Directed A family of proba-
bilistic models able to capture complex structural dependencies are
graphical models such as Bayesian networks (directed models) and
Markov networks (undirected models) [14]. In graphical models,
nodes represent random variables and edges capture dependencies
between these random variables. Therefore, graphical models are
a natural fit for our problem domain where program elements are
random variables and the edges capture a particular dependency
between the properties to be inferred for these program elements.
While we do need to capture dependence between two (or more)
random variables, it is often not possible to decide a priori on the
exact order (direction of the edges) of that dependence. In turn, this
means that undirected models are a better match for our setting as
they do not require specifying a direction of the dependence.

Inference: MAP Inference over Marginals For a given program
x and a probabilistic model P , we are fundamentally interested in
finding the most likely properties which should be assigned to pro-
gram elements V xU given the known, fixed values for the elements
V xK . What is the right query for computing this most likely assign-
ment? Should we try to find the value v of each random variable
ri ∈ V xU which maximizes its marginal probability P (ri = v) sep-
arately, or should we try to find the values v0, v1, . . . , vn for all
random variables r0, . . . , rn ∈ V xU together so that the joint prob-
ability is maximized, that is, P (r0 = v0, r1 = v1, . . . , rn = vn)
(called MAP inference)?

We decided to use MAP inference over marginals for several
reasons. First, we ultimately aim to find the best joint assignment
and not make independent, potentially contradicting predictions.
Second, it is easy to show that maximizing the marginal proba-
bility of each variable separately does not lead to the optimum
assignment computed by MAP inference. Third, when computing
marginals, it is difficult to enforce deterministic constraints such as
A 6= B. It is often easier to incorporate such constraints with MAP
inference. Finally, and as we discuss below, the decision to perform
MAP inference over marginals enjoys a substantial benefit when it
comes to training the corresponding probabilistic model.

An interesting point is that standard MAP inference algorithms
are computationally expensive when the number of possible prop-
erties is large. Hence, we had to develop new algorithmic variants
which can effectively deal with thousands of possible properties for
a given random variable (e.g. many possible names).

Training a Markov Network: Discriminative over Generative
An important question when dealing with probabilistic models is
deciding how the model should be trained. One approach is to
train an undirected model in a generative way, thus obtaining a
joint probability distribution over both V xK and V xU (this model is
sometimes referred to as Markov Random Field). While possible in
theory, this has a serious practical disadvantage: it requires placing
prior probabilities on the known variables V xK . Providing such a
prior distribution can however be very difficult in practice.

However, recall that our MAP inference query is in fact condi-
tional on an existing assignment of the known elements V xK . This
means that the underlying probabilistic model need only capture
the conditional probability distribution of V xU given V xK and not
the joint distribution. An undirected graphical model able to cap-
ture such conditional distributions is referred to as a Conditional
Random Field (CRF) [17]. The CRF model admits discriminative
training where priors on V xK are no longer necessary, a key reason
for why this model is so effective and popular in practice.

Training a CRF: Max-Margin over Maximum Likelihood After
deciding to use CRFs, we still need to find a scalable method for
training and obtaining such CRF models from available data (e.g.
“Big Code” in our setting). Training these models (say via maxi-
mum likelihood) is possible but can be computationally expensive
(see Ch.20, [14]).

Recall that we are mainly interested in MAP inference queries
where we do not need the exact probability value for the predicted
assignment of V xU . Because of that, we are now able to leverage
recent advances in scalable training methods for CRFs and in par-
ticular max-margin training [23, 26], a method geared towards an-
swering MAP inference queries on the trained CRF model.

Summary In summary, based on the above reasoning, we arrive
at using MAP inference queries with Conditional Random Fields
(CRFs), a probabilistic, undirected graphical model which we learn
from the available data via an efficient max-margin training. We do
note however that the translation of programs to networks and the
feature functions we provide are directly reusable if one is inter-
ested in performing marginal queries and quantifying the uncer-
tainty associated with the solutions.

8.1 Clustering vs. Probabilistic Models
It is instructive to understand that our approach is fundamentally
not based on clustering. Given a program x, we do not try to find a
similar (for some definition of similarity) program s in the training
corpus and then extract useful information from s and integrate that
information into x. Such an approach would be limiting as often
there is not even a single program in the training corpus which
contains all of the information we need to predict for program x. In
contrast, with the approach presented here, it is possible to build
a probabilistic model from multiple programs and then use that
information to predict properties about a single program x.

9. Related Work
We next discuss some of the work most closely related to ours.

Probabilistic models for code Recently, there has been interest
in creating probabilistic models of programs based on large code-
bases [1, 19, 24]. In contrast to such generative models, in this
work we model a conditional distribution over likely properties for
any given program. Such discriminative approaches are often more
scalable, in terms of their data requirements and computational ef-
ficiency [20], and enable us to capture complex relationships be-
tween program properties. While there are other probabilistic mod-
els [1, 2, 5, 13], they typically serve different purposes. CRFs, as
we use here, are particularly well suited for making multiple, de-
pendent predictions for complex, structured data like programs.

Graphical models in programming Several works have used
graphical models in the context of programs [3, 9, 15, 16, 18].
All of these works phrase the prediction problem as computing
marginals. As we already discussed in Section 8, we find MAP in-
ference to be the conceptually preferred problem formulation over
marginals. Except for [15], none of these works learn the prob-
abilistic models from data. If one is to pursue learning in their



context, then this would essentially require new features which
keep information common among programs (need some form of
“anchors”). Further, because they frame the problem as computing
marginal probabilities, these approaches do not allow for learning
with loss functions, meaning that one has to model probabilities and
compute the partition function at learning time. This would be pro-
hibitively expensive for large datasets (such as ours) and does not
allow for leveraging advanced methods for MAP inference based
structured prediction (where one need not compute the partition
function). Indeed, the learning method of [15] is extremely ineffi-
cient and suffers from the need to compute expectations w.r.t to the
model which is generally very expensive and requires sampling, a
procedure that is a lot less scalable than MAP inference.

In terms of particular applications, [16] aims to infer ownership
values for pointers which range over a very small domain of 4 val-
ues: ro, co, and their negation. In contrast, we handle efficiently
variables with thousands of possible assignments (for names) and
even for types, the size of our domain is much greater. Further, their
selection of feature functions make the inference process extremely
slow. The reason is that one of the features (called the check factor,
critical to the precision of their approach) requires running program
analysis essentially on every iteration of the inference: this is dev-
astating in an interactive setting (even with optimizations). Indeed,
their follow-up work (section 3, [15]) mentions that the authors
would like to find a better solution to this problem (unfortunately,
pre-computing this feature is also practically infeasible due to the
large numbers of possible combinations of values/variables). Simi-
larly, [18] focuses on inferring likely tags for String methods (e.g.
source, sink, regular, sanitizer), where values range over a small do-
main. The basic idea is to convert a graph extracted from a program
(called the propagation graph) into a factor graph and to then per-
form marginal inference on that graph. This work does a little more
than computing marginals: it selects the best marginals and condi-
tions on them for re-computation of the rest, meaning that it can
potentially encode constraints by conditioning on what is already
computed. This approach is computationally very inefficient: it es-
sentially requires running inference N times for N variables, in-
stead of once. Further, the approach cannot compute optimal MAP
inference. The paper [3] is similar to [18] in the sense that it infers
permission annotations again ranging over a small set of values and
both build factor graphs from programs. However, the inference al-
gorithm in their paper just computes marginals directly and is sim-
pler than the one in [18] (as it does not even iterate).

Overall, we believe that the problems these works address may
benefit from considering MAP inference instead of computing
marginals. Also, it seems that even with computing marginals, these
works are not using state of the art inference methods (e.g. varia-
tional methods instead of the basic sum-product belief propagation
which has no guarantees on convergence).

10. Conclusion
We presented a new statistical approach for predicting program
properties by learning from massive codebases (aka “Big Code”).
The core idea is to formulate the problem of property inference
as structured prediction with conditional random fields (CRFs),
enabling joint predictions of program properties. As an example
of our approach, we built a system called JSNICE which is able
to predict names and type annotations for JavaScript. JSNICE is
practically effective: it was used by more than 30, 000 developers
a week after its release and has now become a popular tool in the
JavaScript developer community.

We believe the structured prediction approach presented in this
work can serve as a basis for exploring approximate solutions to a
variety of analysis and synthesis tasks in the context of “Big Code”.
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